

UNIVERSIDAD DE TARAPACÁ

FACULTAD DE INGENIERÍA

Departamento de Ingeniería en Computación e Informática

Sistema de Analítica en Prevención de Riesgos

Planificación - Casino Luckia Arica S.A

Autores: Andrew Campos Seguel
Gustavo Ríos Álvarez

Asignatura: Proyecto IV 2025

Profesor: Diego Aracena Pizarro

Cliente: Edgardo Flores Alarcón

Arica, 20 de octubre 2025

Índice
1. Definición y justificación del proyecto​ 5

1.1. Contexto​ 5
1.2. Problemática​ 5
1.3. Solución​ 5

2. Alcance y objetivos​ 6
2.1. Objetivo General​ 6
2.2. Objetivos Específicos​ 6
2.3. Carta Gantt​ 7

3. Requerimientos del Proyecto​ 8
3.1. Funcionales​ 8
3.2. No Funcionales​ 10

4. Metodología​ 11
5. Modelos del sistema​ 12

5.1. Diagrama de contexto​ 12
5.2. Análisis del Diagrama de contexto​ 13

5.3. Modelo de caso de uso​ 14
5.4. Análisis del Diagrama de Casos de Uso​ 15

8.1. Modelo Entidad-Relación de la base de datos​ 16
8.2. Modelo de Tablas Relacionales de la base de datos​ 17

8.3. Modelo de proceso de negocio​ 18
9. Visuales del Proyecto​ 1
10. Herramientas para el desarrollo​ 1

10.1. Visual Studio Code​ 1
10.2. Angular Material UI​ 1
10.3. GitHub​ 1
10.4. Figma​ 1
10.5. Vercel​ 1
10.6. Tailwind CSS​ 1

11. Framework​ 1
11.1. Angular​ 1
11.2. NestJs​ 1

12. Herramientas de almacenamiento​ 1
12.1. Google Drive​ 1
12.2. Free SQL Database​ 1

13. Modelado de Datos​ 1
13.1. Base de datos​ 1

14. Descripción de Modelos de análisis​ 1
15. Conclusión​ 1
16. Referencias​ 1

2

Índice de figuras
Figura 1: Carta Gantt​ 7
Figura 2: Metodología Prototipo descartable​ 11
Figura 3: Diagrama de contexto​ 12
Figura 4: Diagrama de caso de uso​ 14
Figura 6: Modelo de Tablas Relacionales​ 17
Figura 7: modelo de negocio registrar incidente​ 18
Figura 8: modelo de negocio generar Dashboard e Informe​ 18
Figura 8: Modo nocturno vista Registro de incidentes​ 19
Figura 11: Modo Diurno vista Registro de incidente​ 20
Figura 12: Vista Dashboard​ 21
Figura 13: Diagrama de modelo de análisis​ 26

3

Índice de Tablas

Tabla 1: Objetivos Específicos​ 6
Tabla 2: Requerimientos funcionales​ 8
Tabla 3: Requerimientos no funcionales​ 10
Tabla 4: Análisis diagrama de contexto​ 13
Tabla 5: Descripción casos de uso​ 15

4

1.​Definición y justificación del proyecto

1.1.​ Contexto

La información sobre seguridad y salud en el trabajo, así como los reportes de
siniestros (incidentes, accidentes con o sin tiempo perdido, cuasi accidentes, horas
trabajadas, días perdidos, capacitaciones, inspecciones, uso de EPP, mantenimientos y
observaciones de seguridad) del Casino Luckia Arica S.A se registran en un sistema propio.

Estos registros se consolidan en reportes individuales, informes mensuales y anuales
en formato PDF, elaborados manualmente. Cada informe incluye datos sobre los siniestros,
las personas afectadas, la ubicación, las fechas y representaciones gráficas. El objetivo de
este proceso es analizar los eventos ocurridos y desarrollar campañas y capacitaciones que
contribuyan a reducir su frecuencia.

1.2.​ Problemática
Estos registros se consolidan manualmente informes mensuales y anuales en formato

PDF, lo que genera una alta carga operativa y una probabilidad considerable de errores o
pérdida de datos. La ausencia de un sistema automatizado de análisis impide transformar los
datos recopilados en información útil para la toma de decisiones, dificultando la detección de
tendencias, la evaluación de causas raíz y la implementación de medidas preventivas
efectivas.

Como resultado, los informes generados presentan limitaciones en cuanto a su

precisión, oportunidad y valor predictivo, reduciendo la efectividad de las campañas y
capacitaciones diseñadas para disminuir la frecuencia de siniestros. Esta situación afecta la
integridad de la información, el control de indicadores de desempeño en seguridad laboral y la
capacidad del área de prevención para desarrollar estrategias basadas en evidencia.

1.3.​ Solución
Diseñar e implementar un sistema integral y automatizado de gestión y análisis de

seguridad como de salud en el trabajo, que permita registrar incidentes, accidentes y
actividades preventivas, además, debe generar informes precisos, oportunos y con valor
predictivo, así como apoyar la toma de decisiones basada en datos para planificar campañas
preventivas y capacitaciones orientadas a reducir la frecuencia de siniestros.

5

2.​Alcance y objetivos

2.1.​ Objetivo General
Diseñar e implementar un sistema integral y automatizado de gestión y análisis de

seguridad, que permita registrar incidentes, accidentes y actividades preventivas, además, debe
generar informes precisos, oportunos y con valor predictivo, así como apoyar la toma de
decisiones basada en datos para planificar campañas preventivas y capacitaciones orientadas a
reducir la frecuencia de siniestros.

2.2.​ Objetivos Específicos

Tabla 1: Objetivos Específicos

Objetivos
específicos

Título Descripción

OE-01 Crear y actualizar carta
gantt

Elaborar y mantener actualizada la planificación
del proyecto mediante una carta Gantt que
permita gestionar los plazos, responsables y
entregables.

OE-02 Establecer
Requerimientos del
sistema

Realizar el levantamiento de información
relevante a través de entrevistas, revisión
documental y análisis del proceso actual de
gestión de riesgos.

OE-03 Diseñar Modelos del
sistema

Diseñar el modelo de datos del sistema,
considerando entidades, relaciones, atributos y
restricciones, como base para la posterior
implementación de la base de da

OE-04 Diseñar e implementar
una base de datos

 partir del modelo diseñado, creando las tablas,
relaciones, claves primarias/foráneas y
estructuras necesarias para almacenar y gestionar
la información del sistema.

OE-05 Diseñar diagramas y
modelos del prototipo

Desarrollar modelos y diagramas del sistema,
tales como: diagrama de contexto, flujos de datos,
casos de uso, arquitectura general y prototipo de
interfaz, para asegurar la coherencia entre
requisitos y solución propuesta

OE-06 Presentar avances al
cliente

Validar los avances del proyecto mediante
revisiones con el usuario clave, aplicando
correcciones sobre los prototipos, modelos o base
de datos según sea necesario.

6

OE-07 Documentar procesos y
resultados

Documentar detalladamente todas las etapas del
proyecto, diagnóstico, análisis, diseño,
implementación y evaluación

2.3.​ Carta Gantt

Figura 1: Carta Gantt

7

3.​Requerimientos del Proyecto

3.1.​ Funcionales

Tabla 2: Requerimientos funcionales

CÓDIGO NOMBRE DESCRIPCIÓN PRIORIDAD

LUAPR-01 Registro de incidentes y
accidentes

El sistema debe permitir registrar
incidentes, accidentes y cuasi
accidentes; indicando fecha y hora;
tipo de suceso; área del trabajador;
descripción; edad; y otros datos del
afectado.

Alta

LUAPR-02 Gestión de actividades
preventivas

El sistema debe permitir registrar
capacitaciones, inspecciones,
mantenimientos, observaciones de
seguridad y uso de EPP.

Media

LUAPR-03 Generación automática
de informes

El sistema debe generar informes
mensuales y anuales en formato
PDF con gráficos, tablas y
resúmenes estadísticos de
tendencias y reportes individuales.

Alta

LUAPR-04 Control de indicadores
de SSL

El sistema debe calcular
automáticamente indicadores de
seguridad y salud laboral (tasa de
frecuencia, gravedad, días perdidos,
etc.)

Alta

LUAPR-05 Consulta y análisis
histórico

El sistema debe permitir consultar y
filtrar registros por Rango de Fecha,
Tipo de evento, Área de trabajo y
por Persona.

Alta

LUAPR-06 Dashboard interactivo El sistema debe incluir un panel
visual con gráficos e indicadores
clave para la toma de decisiones.

Alta

LUAPR-07 Alertas y notificaciones El sistema debe generar alertas
automáticas ante repetición de
eventos o indicadores fuera de
rango.

Baja

8

LUAPR-08 Exportación y respaldo
de datos

El sistema debe permitir exportar la
información a formatos Excel o CSV
y realizar copias de seguridad
automáticas.

Alta

LUAPR-9 Carga masiva de datos
históricos

Debe permitir importar registros
previos desde archivos Excel o
similares.

Media

LUAPR-10 Registro de Usuarios Debe permitir guardar los datos del
afectado en la BD para uso
posteriores

Alta

LUAPR-11 Gestión de usuarios y
roles

Debe permitir la administración de
usuarios con diferentes permisos
(administrador, prevencionista y
encargado de reporte sustituto).

Media

LUAPR-12 Función de
Administrador

El administrador tiene la función de
gestionar roles para los usuarios en
el sistema

Alta

LUAPR-13 Función de
Prevencionista

El prevencionista tiene las funciones
de gestionar reportes, generar
informes y acceso al dashboard para
realizar análisis a partir de los
gráficos visualizados

Alta

LUAPR-14 Función de Encargado
de reporte sustituto

El encargado de reporte sustituto
tiene la función de generar reportes
de incidentes.

Media

9

3.2.​ No Funcionales

Tabla 3: Requerimientos no funcionales

CÓDIGO NOMBRE DESCRIPCIÓN PRIORIDAD

LUAPR-15 Usabilidad La interfaz debe ser intuitiva, con navegación
sencilla y accesible para usuarios no técnicos. Alta

LUAPR-16 Seguridad de la
información

Los datos deben almacenarse cifrados y
protegidos por autenticación segura. Alta

LUAPR-17 Integridad de
datos

El sistema debe evitar duplicación o pérdida
de registros durante las operaciones. Alta

LUAPR-18 Rendimiento Las consultas y generación de reportes deben
ejecutarse en menos de 5 segundos
promedio.

Media

LUAPR-19 Disponibilidad El sistema debe estar disponible el 99.9% del
tiempo. Alta

LUAPR-20 Compatibilidad El sistema debe ser accesible desde
navegadores modernos y dispositivos móviles
(diseño responsive).

Media

LUAPR-21 Mantenibilidad Debe permitir actualizaciones y mejoras sin
interrumpir el servicio ni comprometer la
información.

Media

LUAPR-22 Respaldo y
recuperación

Debe contar con copias automáticas de
seguridad y procedimientos de restauración
ante fallos.

Alta

LUAPR-23 Escalabilidad El sistema debe soportar el crecimiento de
datos y usuarios sin pérdida de rendimiento. Media

LUAPR-24 Cumplimiento
legal

Debe cumplir con la Ley 19.628 de Protección
de la Vida Privada (modificada por la Ley
21.719), y normativas laborales vigentes.

Alta

10

4.​Metodología
​ Para el desarrollo del sistema se ha elegido la metodología de cascada (o waterfall), esto
debido a que se adapta a las características del proyecto enfocado en un desarrollo en
secuencia ordenada por cada fase, además de esto integrar a este modelo lo que sería la
retroalimentación controlada dándonos mayor flexibilidad al momento de solucionar errores
con esto le daremos el nombre de “Prototipado Descartable”.

​ Donde tendríamos el clásico desarrollo en cascada, Análisis, Diseño , Desarrollo ,
Pruebas, Despliegue, agregando a esta secuencia ciclos controlados en cada fase con
condiciones específicas dotando la secuencia de flexibilidad de retorno pudiendo retroceder
una cantidad definida de etapas para la corrección de errores o modificación de algún
apartado sin la necesidad de volver a empezar la secuencia desde el inicio, dando condiciones
de retroceso con lo que se deberían de cumple para poder realizar este retroceso sin afectar
el proceso de desarrollo principal.

Figura 2: Metodología Prototipo descartable

​
La elección de esta metodología se justifica porque el proyecto cuenta con requerimientos

bien definidos desde el inicio, lo que permite planificar y ejecutar las tareas de manera
estructurada. Además, el modelo en cascada facilita la documentación formal de cada fase, el
seguimiento del progreso y la verificación de entregables, aspectos esenciales para un
entorno académico y para un cliente institucional como el Casino Luckia Arica S.A.

Asimismo, este enfoque ofrece claridad en la asignación de roles y responsabilidades
dentro del equipo, asegurando un flujo de trabajo organizado y controlado. Su aplicación
permitirá garantizar la trazabilidad, cumplimiento de plazos y calidad de los resultados,
contribuyendo a la confiabilidad y éxito del sistema propuesto.

11

5.​Modelos del sistema

5.1.​ Diagrama de contexto

Figura 3: Diagrama de contexto

12

5.2.​ Análisis del Diagrama de contexto

Tabla 4: Análisis diagrama de contexto

Entidad Externa Tipo de
Flujo Flujo de Datos Rol en Sistema

Prevencionista
de Riesgo

Entrada y
Salida

Reporte
Incidentes (Input) ​

&​
Genera

Estadísticas
(Output)

Es el usuario operativo principal
que ingresa datos y consume el
análisis.

Encargado
Reportes Sust. Entrada

Reporte
Incidentes ​

(Input)

Es una fuente adicional de datos
de incidentes, probablemente como
apoyo al prevencionista.

Equipo
Informático Entrada Gestión Usuarios

(Input)

Es responsable de administrar las
cuentas, accesos y permisos de los
usuarios del sistema.

Departamento
Prevención Salida

reportes
mensuales

anuales ​
(Output)

Es el receptor de los resultados
consolidados y periódicos del
sistema para la toma de
decisiones.

BD (Base de
Datos) Salida

Almacena Datos
Incidentes

(Output)

Es el repositorio de
almacenamiento persistente donde
el sistema guarda todos los datos
de incidentes.

13

5.3.​ Modelo de caso de uso

Figura 4: Diagrama de caso de uso

A partir del diagrama de casos de uso presentado, se entiende la funcionalidad y
las interacciones clave dentro de un Sistema Analítico de Gestión de Riesgos.

14

5.4.​ Análisis del Diagrama de Casos de Uso
El diagrama define el alcance del sistema y cómo los diferentes actores (usuarios)

interactúan con sus casos de uso (funcionalidades).

6.​ Sistema Analítico de Gestión de Riesgos
Proporciona herramientas para la administración, seguimiento, análisis y reporte de

incidentes, accidentes, campañas y usuarios relacionados con la gestión de riesgos.

7.​ Actores (Usuarios del Sistema)
Hay tres actores principales definidos:

●​ Prevencionista: Es el actor principal con la mayor cantidad de interacciones. Es el
responsable de las funciones operacionales clave de la gestión de riesgos.

●​ Administrador: Es el actor responsable de las funciones de gestión de acceso al

sistema.

●​ Encargado de Reporte Sustituto: Un actor con una función única relacionada con el
ingreso de reportes de incidentes, funciona como apoyo para el usuario
Prevencionista.

8.​ Descripción de los Casos de Uso

Tabla 5: Descripción casos de uso

Caso de Uso Actor(es) Involucrado(s) Descripción

Gestionar reportes de incidentes Prevencionista Crear, editar, consultar y eliminar
(CRUD) informes de incidentes

Ingresar accidente Prevencionista, Encargado de
reportes sustituto

Registrar información detallada sobre
un accidente ocurrido

Gestionar campañas Prevencionista Crear, editar, consultar y eliminar
campañas de prevención o seguridad

Visualizar gráficas Prevencionista Ver datos analíticos (probablemente
sobre incidentes, accidentes o
campañas) en formato gráfico

Descargar gráficas Prevencionista Exportar o guardar los datos
analíticos para su uso externo o en
presentaciones

Gestionar usuarios Administrador Crear, modificar, asignar roles y
eliminar cuentas de usuario del
sistema

15

8.1.​ Modelo Entidad-Relación de la base de datos

Figura 5: Modelo entidad-relación de la BD

16

8.2.​ Modelo de Tablas Relacionales de la base de datos

Figura 6: Modelo de Tablas Relacionales

17

8.3.​ Modelo de proceso de negocio

​ Procesos de negocio referente a las funcionalidades principales de sistema

Figura 7: modelo de negocio registrar incidente

Figura 8: modelo de negocio generar Dashboard e Informe

18

9.​Prototipos de Visuales del Proyecto

Figura 8: (Modo nocturno) vista Registro de incidentes

19

Figura 11: Modo Diurno vista Registro de incidente

20

Figura 12: Vista Dashboard

21

10.​ Herramientas para el desarrollo

10.1.​Visual Studio Code

Visual Studio Code (conocido también como “VS Code”) es un editor de código fuente gratuito,

potente y ligero de código abierto, desarrollado por Microsoft. Es muy popular y funciona en Windows,

macOS y Linux. Ofrece funciones como resaltado de sintaxis, autocompletado, depuración y control de

versiones (Git). Su amplia gama de extensiones permite personalizarlo y añadir soporte para casi cualquier

lenguaje de programación y tecnología, lo que será útil para la mejora constante en el desarrollo del

producto. Este será el editor de código utilizado para programar la plataforma, útil debido a sus múltiples

extensiones de uso libre y funciones de acceso rápido con los cuales se puede hacer más rápido la

implementación de los módulos necesarios.

10.2.​Angular Material UI

Es una biblioteca de componentes de interfaz de usuario (UI) que se integra con el framework de

desarrollo web Angular. Permite a los desarrolladores crear aplicaciones visualmente atractivas y

consistentes rápidamente al proporcionar una colección de componentes reutilizables (como botones,

tarjetas, campos de entrada) que siguen las pautas de Material Design de Google. Seleccionado para utilizar

su colección de componentes en el diseño de la plataforma.

10.3.​GitHub

Es una plataforma en la nube que sirve como servicio de alojamiento para proyectos de software,

utilizando el sistema de control de versiones Git para facilitar la colaboración entre desarrolladores. Permite

a los usuarios almacenar, compartir y trabajar en código de forma remota, siguiendo y administrando los

cambios a lo largo del tiempo. Se llevará el front-end y back-end del sistema a esta plataforma para

controlar las versiones de la fase de desarrollo, mejoras, correcciones e implementaciones de nuevos

módulos.

10.4.​Figma

Plataforma de diseño y prototipado basada en la nube que permite a los equipos crear, compartir y

probar diseños de interfaces digitales, como sitios web y aplicaciones. Su principal característica es la

colaboración en tiempo real, ya que varias personas pueden trabajar en el mismo proyecto

simultáneamente, lo que agiliza el proceso de diseño. Utilizada principalmente para realizar los diseños

bosquejo de la interfaz del sistema, con el objetivo de que se pueda seguir una estructura de diseño y ser

expuesto al cliente, para corregir errores de diseño, propuestas y funcionalidades pertinentes.

22

10.5.​Vercel

Plataforma en la nube que permite a los desarrolladores crear, desplegar y escalar sitios web y

aplicaciones de alto rendimiento. Se enfoca en simplificar el proceso de desarrollo frontend y backend,

ofrece alojamiento con escalado automático y es conocida por ser la creadora del framework Next.js. Sus

características incluyen implementaciones instantáneas, SSL automático y funciones sin servidor. Elegida

para desplegar el front-end de la plataforma.

10.6.​Tailwind CSS

Tailwind es un framework de CSS de código abierto que utiliza clases de utilidad (utility-first) para

ayudar a los desarrolladores a diseñar interfaces web de manera eficiente. Tailwind ofrece clases de bajo

nivel para cada propiedad CSS (como margen, color de texto, flexbox, etc.) que se aplican directamente en

el HTML. Este es útil para evitar el uso de archivos de estilo para la plataforma, además de simplificar el

diseño del HTML con la utilización de clases.

11.​ Framework

11.1.​Angular

Framework de desarrollo web de código abierto, escrito en TypeScript y mantenido por Google, que

se utiliza para crear aplicaciones web de una sola página (SPA). Facilita la construcción de aplicaciones

rápidas, fiables y escalables mediante un conjunto de herramientas, APIs y bibliotecas. Su arquitectura está

basada en componentes, lo que permite crear aplicaciones modulares y reutilizables, el cual será la base

para el sistema del lado del cliente.

11.2.​NestJs

NestJS es un framework de Node.js para crear aplicaciones backend eficientes y escalables, que

utiliza TypeScript por defecto para facilitar el desarrollo de aplicaciones profesionales. Está construido sobre

Express (o Fastify) y se inspira en la arquitectura de Angular, organizando el código en módulos,

controladores y servicios para una estructura clara y mantenible. Su diseño facilita la integración de

módulos populares, la escritura de pruebas y el uso de herramientas para automatizar tareas repetitivas,

utilizado para la implementación del lado de servidor en el sistema.

23

12.​ Herramientas de almacenamiento
12.1.​Google Drive

Es un servicio de almacenamiento en la nube que permite guardar archivos de forma segura,

organizarlos en carpetas y acceder a ellos desde cualquier dispositivo. También facilita compartir archivos

con otros usuarios y colaborar en documentos, hojas de cálculo y presentaciones en tiempo real. Esta

herramienta tiene el objetivo de almacenar toda la documentación digital relacionada al proyecto, ya sea,

informes de planificación y de avances, diagramas, recursos para la documentación, enlaces, fuentes, etc.

12.2.​Free SQL Database

Proporciona una opción gratuita para bases de datos MySQL en la nube, adecuada para proyectos

de demostración y pruebas. Permite conectarse utilizando herramientas como MySQL Workbench o

PHPMyAdmin. Free SQL Database tiene como objetivo ser el espacio de almacenamiento de las tablas,

entidades y registros de la base de datos del desarrollo del proyecto.

24

13.​ Modelado de Datos

13.1.​Base de datos

CREATE TABLE `employees` (
 `Employee_ID` varchar(45) NOT NULL,
 `Employee_Name` varchar(45) NOT NULL,
 `Area_FK` int NOT NULL,
 PRIMARY KEY (`Employee_ID`),
 KEY `fk_Employees_Area1_idx` (`Area_FK`),
 CONSTRAINT `fk_Employees_Area1` FOREIGN KEY
(`Area_FK`) REFERENCES `area` (`Area_ID`)
)

CREATE TABLE `report` (
 `Report_ID` int NOT NULL,
 `Event_date` datetime DEFAULT NULL,
 `Presentation_Date` datetime DEFAULT NULL,
 `Dischaarged_Date` datetime DEFAULT NULL,
 `Lost_Days` int DEFAULT NULL,
 `DIAT` tinyint NOT NULL,
 `DIET` tinyint DEFAULT NULL,
 `Employees_Fk` varchar(45) NOT NULL,
 `Users_FK` int NOT NULL,
 `Event_FK` int NOT NULL,
 `Area_FK` int NOT NULL,
 `Document_FK` int DEFAULT NULL,
 PRIMARY KEY (`Report_ID`),
 UNIQUE KEY `Document_FK` (`Document_FK`),
 KEY `fk_Report_Employees1_idx` (`Employees_Fk`),
 KEY `fk_Report_Users1_idx` (`Users_FK`),
 KEY `fk_Report_Event1_idx` (`Event_FK`),
 KEY `fk_Report_Area1_idx` (`Area_FK`),
 CONSTRAINT `fk_Report_Area1` FOREIGN KEY
(`Area_FK`) REFERENCES `area` (`Area_ID`),
 CONSTRAINT `fk_report_document` FOREIGN KEY
(`Document_FK`) REFERENCES `document` (`id`) ON
DELETE SET NULL ON UPDATE CASCADE,
 CONSTRAINT `fk_Report_Employees1` FOREIGN KEY
(`Employees_Fk`) REFERENCES `employees`
(`Employee_ID`),
 CONSTRAINT `fk_Report_Event1` FOREIGN KEY
(`Event_FK`) REFERENCES `event` (`Event_ID`),
 CONSTRAINT `fk_Report_Users1` FOREIGN KEY
(`Users_FK`) REFERENCES `users` (`User_ID`)
)

CREATE TABLE `users` (
 `User_ID` int NOT NULL,
 `uName` varchar(45) NOT NULL,
 `Uemail` varchar(45) NOT NULL,
 `Upass` varchar(45) NOT NULL,
 `Rol_id` int NOT NULL,
 `Nrol` varchar(45) NOT NULL,
 PRIMARY KEY (`User_ID`)
)

CREATE TABLE `document` (
 `id` int NOT NULL AUTO_INCREMENT,
 `nombre` varchar(255) NOT NULL,
 `ruta` varchar(500) NOT NULL,
 `tipo` varchar(50) DEFAULT NULL,
 `fecha_subida` timestamp NULL DEFAULT
CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`)
)

CREATE TABLE `area` (
 `Area_ID` int NOT NULL,
 `Area_name` varchar(45) NOT NULL,
 `Company_FK` int NOT NULL,
 PRIMARY KEY (`Area_ID`),
 KEY `fk_Area_Company_idx` (`Company_FK`),
 CONSTRAINT `fk_Area_Company` FOREIGN KEY
(`Company_FK`) REFERENCES `company`
(`Company_ID`)
)

CREATE TABLE `company` (
 `Company_ID` int NOT NULL,
 `Company_name` varchar(45) NOT NULL,
 PRIMARY KEY (`Company_ID`)
)
CREATE TABLE `event` (
 `Event_ID` int NOT NULL,
 `Type` varchar(45) NOT NULL,
 `Description` varchar(45) NOT NULL,
 PRIMARY KEY (`Event_ID`)
)

25

14.​ Descripción de Modelos de análisis

Figura 13: Diagrama de modelo de análisis

En este diagrama donde el prevencionista actúa como el usuario final realiza una solicitud al

sistema para solicitar el informe (mensual/anual) donde esta pasara por la Capa de presentación (FrontEnd,

en Angular con Tailwind) que recibe la solicitud realizando la petición a la capa lógica (BackEnd, en NestJS)

procesando esta solicitud y obteniendo la información desde la BD(Base de datos) retornando la

información por el BackEnd donde se ordenar y dará formato para que el FrontEnd lo estructure a una

plantilla de informe

26

15.​ Conclusión

El desarrollo del Sistema de Analítica en Prevención de Riesgos permitió cumplir con el objetivo de

transformar un proceso manual y fragmentado en una solución integrada, orientada al análisis y uso

efectivo de la información. A través del registro estructurado de incidentes, accidentes y actividades

preventivas, el sistema facilita el control, la trazabilidad y la consulta histórica de los datos, aportando

mayor claridad al trabajo del área de prevención.

En términos generales, el proyecto deja una plataforma funcional y preparada para su despliegue,

la cual puede ser ajustada y validada en conjunto con el cliente para su uso operativo. Esta solución no solo

aporta valor al Casino Luckia Arica S.A., sino que también representa una experiencia significativa de

aplicación práctica de conocimientos, consolidando el trabajo realizado y proyectándose hacia su

implementación definitiva.

27

16.​ Referencias

1.​ El modelo en cascada en el desarrollo de software. (11 octubre). IONOS Digital Guide.

https://www.ionos.com/es-us/digitalguide/paginas-web/desarrollo-web/el-modelo-en-cascada/

2.​ MySQL documentation. (25 octubre). https://docs.oracle.com/cd/E17952_01/index.html

3.​ Angular documentación. (07 noviembre). https://angular.dev/

4.​ Angular Material Design components (07 noviembre).

https://material.angular.dev/components/categories

5.​ Official tailwind UI components and templates. (07 noviembre). https://tailwindcss.com/plus

6.​ Github, project repository Luckia - APR. (07 noviembre).

https://github.com/DreuxTer/Luckia-PAPR

28

https://www.ionos.com/es-us/digitalguide/paginas-web/desarrollo-web/el-modelo-en-cascada/
https://docs.oracle.com/cd/E17952_01/index.html
https://angular.dev/
https://material.angular.dev/components/categories
https://tailwindcss.com/plus
https://github.com/DreuxTer/Luckia-PAPR

	1.​Definición y justificación del proyecto
	1.1.​Contexto
	1.2.​Problemática
	1.3.​Solución

	2.​Alcance y objetivos
	2.1.​Objetivo General
	2.2.​Objetivos Específicos
	Tabla 1: Objetivos Específicos

	
	2.3.​Carta Gantt
	Figura 1: Carta Gantt

	3.​Requerimientos del Proyecto
	3.1.​Funcionales
	Tabla 2: Requerimientos funcionales

	3.2.​No Funcionales
	Tabla 3: Requerimientos no funcionales

	4.​Metodología
	Figura 2: Metodología Prototipo descartable

	5.​Modelos del sistema
	5.1.​Diagrama de contexto
	Figura 3: Diagrama de contexto
	
	5.2.​Análisis del Diagrama de contexto
	Tabla 4: Análisis diagrama de contexto

	5.3.​Modelo de caso de uso
	Figura 4: Diagrama de caso de uso
	
	5.4.​Análisis del Diagrama de Casos de Uso
	Tabla 5: Descripción casos de uso

	8.1.​Modelo Entidad-Relación de la base de datos
	8.2.​Modelo de Tablas Relacionales de la base de datos
	Figura 6: Modelo de Tablas Relacionales
	
	8.3.​Modelo de proceso de negocio
	Figura 7: modelo de negocio registrar incidente
	Figura 8: modelo de negocio generar Dashboard e Informe

	9.​Prototipos de Visuales del Proyecto
	
	Figura 8: (Modo nocturno) vista Registro de incidentes

	
	
	
	Figura 11: Modo Diurno vista Registro de incidente
	Figura 12: Vista Dashboard

	10.​Herramientas para el desarrollo
	10.1.​Visual Studio Code
	10.2.​Angular Material UI
	10.3.​GitHub
	10.4.​Figma
	10.5.​Vercel
	10.6.​Tailwind CSS

	11.​Framework
	11.1.​Angular
	11.2.​NestJs

	12.​Herramientas de almacenamiento
	12.1.​Google Drive
	12.2.​Free SQL Database

	13.​Modelado de Datos
	13.1.​Base de datos

	14.​Descripción de Modelos de análisis
	
	Figura 13: Diagrama de modelo de análisis

	15.​Conclusión
	16.​Referencias

