
Proyecto IV

UNIVERSIDAD DE TARAPACÁ

FACULTAD DE INGENIERÍA

Departamento de Ingeniería en Computación e Informática

PROYECTO IV

Manual de Usuario

Arica, 29 de Diciembre de 2025

1

Autores: Patricio Chang Reyes
Francisco Pantoja González

Nombre
Empresa:

Empresa Portuaria Arica

Profesor: Diego Aracena Pizarro

Proyecto IV

Índice
1. Pantallas de la Aplicación​ 3

Principal​ 3
Boya​ 4
Turismo​ 5
Espacios​ 6

2. Estructura del Backend​ 6
2.1. Módulo: Boya (Monitoreo Oceanográfico)​ 7
2.2. Módulo: Gestión (Logística y Servicios Portuarios)​ 7
2.3. Módulo: Turismo (Información Turística Dinámica)​ 7

3. Configuración y Despliegue de la Aplicación​ 8
Establecer dirección IP del Backend​ 8
Modificar Repositorios de prueba​ 9

4. Configuración y Despliegue del Backend​ 9
4.1. Requisitos Previos​ 9
4.2. Variables de Entorno​ 10
4.3. Configuración de Servicios Externos​ 10

A. Firebase Admin SDK​ 10
B. Persistencia de Datos​ 10

4.4. Despliegue con Docker y Docker Compose​ 11
4.4.1. El Dockerfile (Multi-stage Build)​ 11
4.4.2. Orquestación con Docker Compose​ 12
4.4.3. Consideraciones Críticas para el Despliegue​ 12
4.4.4. Comandos para el Despliegue​ 13

2

Proyecto IV

1.​Pantallas de la Aplicación

La aplicación cuenta con cuatro pantallas principales: Principal, Boya, Turismo, Espacios. A

continuación se detallan los aspectos centrales de cada una de ellas

Principal

Contiene el menú principal donde se pueden acceder a los módulos de la aplicación. Cuenta con un

botón en la zona inferior derecha para poder acceder a las configuraciones. En caso de no poder

conectarse al backend, la aplicación funciona en modo sin conexión, con los últimos datos obtenidos

del mismo.

3

Proyecto IV

Boya

Contiene un mensaje del último estado de la marea. Dependiendo de la altura máxima obtenida,

muestra un color distinto: verde, amarillo y rojo. Luego está el visualizador de gráficas por rango de

tiempo, el cual se actualiza con el botón de recargar al costado derecho de los selectores de fecha.

Finalmente se cuenta con dos botones para generar reportes: CSV y PDF, los cuales mostrarán un

resumen de las gráficas acompañadas de dashboards extra (para PDF) de acuerdo al rango establecido

por el usuario.

4

Proyecto IV

Turismo

Contiene dos secciones principales: Atractivos turísticos y el Itinerario de Cruceros. Ambas secciones se

pueden recorrer un una lista horizontal y vertical respectivamente. Para filtrar los itinerarios de

cruceros, utilice el botón de “Buscar Temporada”. Seleccionando en el diálogo emergente la temporada

a visualizar.

5

Proyecto IV

Espacios

Contiene dos secciones principales, espacios del puerto y estado del antepuerto. Para navegar entre

cada una de estas secciones puede hacer uso de los botones con los mismos nombres o desplazar

horizontalmente la paginación. Para acceder a los formularios de solicitud de espacios del puerto,

seleccione el botón correspondiente al espacio deseado. Luego llene los datos del formulario

emergente.

2.​Estructura del Backend

El backend actúa como un núcleo integrador diseñado bajo una arquitectura modular. Utiliza NestJS

para organizar la lógica de negocio en servicios inyectables, lo que permite que cada módulo (Boya,

Gestión y Turismo) opere de forma independiente pero comparta recursos globales como la base de

datos, el sistema de caché (Redis) y el motor de notificaciones (Firebase).

6

Proyecto IV

2.1.​ Módulo: Boya (Monitoreo Oceanográfico)

Es el componente más robusto, encargado de la telemetría en tiempo real y la seguridad portuaria.

●​ Adquisición de Datos: Ejecuta procesos programados (Cron Jobs) que consumen APIs externas

de sensores.

●​ Procesamiento de Datos: Recopila variables de altura de ola (máxima, significativa, media),

periodos, cantidad de olas y ráfagas de viento.

●​ Normalización Temporal: Utiliza la librería Luxon para convertir los tiempos UTC de los

sensores a la zona horaria local de Chile (America/Santiago).

●​ Persistencia Híbrida: * Caché (Redis): Almacena el estado actual y un historial rápido para los

gráficos de la App móvil.

○​ Histórico (CSV): Mantiene un registro físico de largo plazo para auditorías y reportes.

●​ Inteligencia de Alertas: Evalúa los datos en tiempo real. Si detecta olas peligrosas (ej. > 200

cm) en dos mediciones consecutivas, dispara notificaciones push vía Firebase.

●​ Generador de Reportes: Integra PDFKit y QuickChart para crear informes PDF automáticos con

gráficos y tablas de riesgo con formato condicional.

2.2.​ Módulo: Gestión (Logística y Servicios Portuarios)

●​ Gestión de Reservas (CTI y Visitas): Maneja las solicitudes para el "Centro Turístico Integral" y

el programa "Conozca su Puerto", procesando listas de visitantes y enviando confirmaciones

automáticas vía Nodemailer tanto al administrador como al usuario.

●​ Control de Antepuerto: Implementa un Cron Job que simula y monitorea el estado de

disponibilidad del antepuerto. Si el estado cambia (Disponible/Lleno), envía notificaciones

push mediante Firebase, utilizando un Cooldown de 1 hora en Redis para evitar saturar a los

transportistas.

●​ Seguridad Anti-Spam: Protege los formularios de reserva mediante el método validarSpam,

que utiliza Redis para bloquear múltiples envíos desde un mismo dispositivo por un periodo de

30 minutos.

2.3.​ Módulo: Turismo (Información Turística Dinámica)

Este servicio proporciona información actualizada sobre los atractivos de la región y la llegada de

cruceros mediante técnicas de recolección de datos.

●​ Web Scraping en Tiempo Real: Utiliza la librería Cheerio para extraer información

directamente desde el sitio oficial puertoarica.cl, evitando la necesidad de una base de datos

manual.

●​ Gestión de Atractivos: Analiza el HTML de la sección de atractivos turísticos para obtener

nombres, descripciones e imágenes de los destinos locales.

●​ Itinerario de Cruceros: Procesa dinámicamente las tablas de itinerarios de temporadas

actuales (ej. 2025-2026), extrayendo datos de naves, agencias y fechas de arribo.

7

Proyecto IV

●​ Configuración Segura: Realiza peticiones HTTPS configuradas para ignorar errores de

certificados no autorizados mediante un httpsAgent, garantizando la continuidad del servicio.

3.​Configuración y Despliegue de la Aplicación

Establecer dirección IP del Backend

En el directorio principal, diríjase al archivo

commonMain/com/epa/epamovil/data/api/ApiServiceEPA.kt. Luego ubique el objeto llamado

EPAConnectionData y acceda a la variable baseIP. Este cambio afectará a todas las entradas que

necesiten acceder al backend. Adicionalmente, para Android. En caso de que la dirección no esté

protegida con el protocolo HTTPS, debe abrir una excepción de dominios inseguros permitidos en el

archivo androidMain/res/xml/network_config.xml

8

Proyecto IV

Modificar Repositorios de prueba

El archivo commonMain/com/epa/epamovil/di/AppModule.kt permite modificar los Repositorios de

prueba para realizar testing y debugging. Por ejemplo, todos los Repositorios con prefijo “Fake” sirven

como pruebas para comprobación de funcionalidades con datos ficticios. Por defecto están habilitados

todos los Repositorios con prefijo “SqlDelight”, los cuales cachean localmente la información obtenida

desde Ktor.

4.​Configuración y Despliegue del Backend

Para que el sistema funcione correctamente, se requiere la integración de servicios de terceros,

variables de entorno específicas y una base de datos en memoria para la gestión de estados rápidos.

4.1.​ Requisitos Previos

Antes de iniciar la configuración, asegúrese de tener instalados los siguientes componentes:

●​ Node.js: Versión 18 o superior.

●​ Redis Server: Ejecutándose localmente o accesible vía red para la gestión de caché y bloqueos.

●​ Cuenta de Firebase: Con acceso a la consola para generar las credenciales del SDK de

Administración.

●​ Servidor SMTP: Una cuenta de Gmail o similar con "Contraseñas de aplicación" activadas para

el envío de correos.

9

Proyecto IV

4.2.​ Variables de Entorno

Cree un archivo .env en la raíz del proyecto con las siguientes claves obligatorias para el correcto

funcionamiento de los servicios:

Configuración de API Externa (OceanCom)

API_TOKEN=tu_token_aqui # Necesario para BoyaService

Configuración de Correo (Nodemailer)

EMAIL_USER=tu_correo@gmail.com # Cuenta emisora

EMAIL_PASS=tu_clave_de_aplicacion # Contraseña de 16 dígitos de Google

EMAIL_TO=admin_puerto@ejemplo.com # Destinatario de las solicitudes CTI

Umbrales de Seguridad

UMBRAL_ALERTA_CM=200 # Límite para disparar notificaciones de marejada

Configuración de Redis

REDIS_HOST=localhost

REDIS_PORT=6379

4.3.​ Configuración de Servicios Externos

A. Firebase Admin SDK

Para habilitar las notificaciones push en tiempo real:

1.​ Descargue el archivo firebase-service-account.json desde la consola de Firebase.

2.​ Colóquelo en la raíz del proyecto.

3.​ El sistema utilizará este archivo para mandar alertas a los tópicos de firebase de la boya y el

antepuerto.

B. Persistencia de Datos

●​ Directorio de Datos: Asegúrese de que la carpeta /data exista en la raíz del proyecto, ya que

allí se almacenarán el archivo historico.csv.

●​ Permisos: El usuario que ejecute el backend debe tener permisos de escritura sobre este

directorio para evitar errores en el BoyaService.

10

Proyecto IV

4.4.​ Despliegue con Docker y Docker Compose

4.4.1.​ El Dockerfile (Multi-stage Build)

Usaremos una construcción en dos etapas para que la imagen final sea liviana y solo contenga lo

necesario para ejecutar la aplicación, evitando que el código fuente y las herramientas de compilación

ocupen espacio innecesario.

--- Fase 1: Construcción (Compilar el TypeScript) ---

FROM node:22-alpine AS builder

WORKDIR /app

Copiar solo los package.json para instalar dependencias

COPY package.json package-lock.json ./

RUN npm install

Copiar el resto del código fuente

COPY . .

Compilar la aplicación

RUN npm run build

--- Fase 2: Producción (Imagen final y limpia) ---

FROM node:22-alpine

WORKDIR /app

Instalar solo las dependencias de producción (más ligero)

COPY package.json package-lock.json ./

RUN npm install --omit=dev

Copiar la aplicación compilada desde la fase de "builder"

COPY --from=builder /app/dist ./dist

Exponer el puerto que usa NestJS

EXPOSE 3000

Comando para iniciar la aplicación

CMD ["node", "dist/main"]

11

Proyecto IV

4.4.2.​ Orquestación con Docker Compose

Para recibir los formularios de reserva, el estado del antepuerto y el histórico rápido de la boya,

usaremos docker-compose.yml para levantar ambos servicios al mismo tiempo.

services:

 backend:

 build:

 context: .

 container_name: epa-backend

 ports:

 - "3000:3000"

 volumes:

 - ./data:/app/data

 -

./firebase-service-account.json:/app/firebase-service-account.json

 env_file:

 - .env

 depends_on:

 - redis

 environment:

 - REDIS_HOST=redis

 - REDIS_PORT=6379

 redis:

 image: redis:alpine

 container_name: epa-redis

 ports:

 - "6379:6379"

 restart: always

4.4.3.​ Consideraciones Críticas para el Despliegue
●​ Persistencia (Volumes): Es vital mapear la carpeta ./data del host hacia /app/data en el

contenedor. Si no haces esto, cada vez que reinicies el contenedor de Docker perderás el

archivo historico.csv generado por el BoyaService.

●​ Networking: En el archivo .env, debes cambiar REDIS_HOST=localhost por REDIS_HOST=redis.

Dentro de la red de Docker, los contenedores se ven entre sí por el nombre del servicio

definido en el Compose.

12

Proyecto IV

●​ Firebase: Asegúrate de que la ruta hacia el firebase-service-account.json en el contenedor

coincida con la que espera tu FirebaseService para enviar las notificaciones de alerta y

antepuerto.

4.4.4.​ Comandos para el Despliegue

Una vez configurados los archivos, solo necesitas ejecutar:

1.​ Construir y levantar todo:

docker-compose up -d --build

2.​ Ver los logs en tiempo real (útil para el Cron Job):

docker logs -f epa-backend

13

	
	1.​Pantallas de la Aplicación
	Principal
	Boya
	
	Turismo
	
	Espacios

	2.​Estructura del Backend
	2.1.​Módulo: Boya (Monitoreo Oceanográfico)
	2.2.​Módulo: Gestión (Logística y Servicios Portuarios)
	2.3.​Módulo: Turismo (Información Turística Dinámica)

	3.​Configuración y Despliegue de la Aplicación
	Establecer dirección IP del Backend
	
	Modificar Repositorios de prueba

	4.​Configuración y Despliegue del Backend
	4.1.​Requisitos Previos
	4.2.​Variables de Entorno
	4.3.​Configuración de Servicios Externos
	A. Firebase Admin SDK
	B. Persistencia de Datos

	4.4.​Despliegue con Docker y Docker Compose
	4.4.1.​El Dockerfile (Multi-stage Build)
	4.4.2.​Orquestación con Docker Compose
	4.4.3.​Consideraciones Críticas para el Despliegue
	4.4.4.​Comandos para el Despliegue

