
UNIVERSIDAD DE TARAPACÁ

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE INGENIERÍA CIVIL EN COMPUTACIÓN E

INFORMÁTICA

Plan de Proyecto

“Maquinaria de

clasificación de

materiales”

Alumnos: ​ ​ Bastian Hernandez

Saoud Ahmed

Alex Campillay

Marcos Caldas

Enzo Llancabure

Asignatura:​ Proyecto l

Profesor:​ ​ Baris Klobertanz Quiroz

30 de Diciembre – 2025

Historial De Cambios

 Tabla N°1 “Historial de Cambios”.

Fecha Versión Descripci
ón

Autor(es)

22/09 1.0 Reconocimiento del

Problema y

Formalización del

Proyecto

Todos

26/09 1.1 Finalización de la

introducción

Marcos

Caldas

Enzo

Llancabure

Bastian

Hernandez

08/10 1.2 Finalización de la

organización de

personal

Marcos

Caldas

Bastian

Hernandez

Enzo

Llancabure

13/10 1.3 Finalización de la

planificación del

proyecto

Enzo

Llancabure

Marcos

Caldas

Bastian

Hernandez

17/10 1.4 Finalización de la

planificación de

recursos

Enzo

Llancabure

Marcos

Caldas

17/10 1.5 Finalización de la

conclusión informe l

Enzo

LLancabure

17/10 1.6 Finalización de las

referencias informe

l

Bastian

Hernandez

28/11 1.7 Corrección del

informe fase l

Todos

12/12 1.8 Finalización de

análisis y diseño

Bastian

Hernandez,

Alex

Campillay

12/12 1.9 Finalización de

Implementación

Saoud Ahmed

Marcos

Caldas

13/12 2.0 Finalización de

Resultados

Marcos

Caldas,

Enzo

Llancabure

13/12 2.1 Finalización de

conclusión fase ll

Enzo

Llancabure

26/12 2.2 Corrección del

informe fase ll

Todos

28/12 2.3 Finalización de

prueba de

funcionamiento del

sistema

Bastian

Hernandez,

Marcos

Caldas

28/12 2.4 Finalización

Conclusión Fase lll

Enzo

Llancabure

30/12 2.5 Finalización Y

entrega de informe

Final

Todos

➢​Índice

1. Panel General​ 6
1.1. Introducción​ 6
1.2. Objetivos​ 7

1.2.1. Objetivo General​ 7
1.2.2. Objetivos Específicos​ 7

1.3. Restricciones​ 9
1.4. Entregables​ 10

2. Organización del Personal​ 11
2.1. Descripción de los Roles​ 11
2.2. Personal que Cumplirá los Roles​ 11
2.3. Métodos de Comunicación​ 12

3. Planificación del Proyecto​ 13
3.1. Actividades​ 13
3.2. Carta Gantt​ 15
3.3. Gestión de Riesgos​ 16

4. Planificación de los Recursos​ 19
4.1. Hardware​ 19
4.2. Software​ 19
4.3. Estimación de Costos​ 20

5. Análisis y Diseño​ 23
5.1 Especificación de requerimientos​ 23
5.1.1 Requerimientos funcionales​ 23
5.1.2 Requerimientos no funcionales​ 24
5.2 Arquitectura de software​ 25
5.3 Diseño inicial de la interfaz gráfica de usuario (GUI)​ 29

6. Implementación​ 30
6.1 Fundamentos de los movimientos​ 30

6.2 Descripción del sistema​ 33
6.2.1 Cliente​ 40
6.2.2 Servidor​ 44
6.2.3 Interfaz gráfica de usuario (GUI)​ 46

7. Resultados​ 47
7.1 Estado actual del proyecto​ 47
7.2 Problemas encontrados y solucionados​ 49

8. Prueba de funcionamiento del sistema​ 50
8.1. Descripción de prueba de funcionamiento.​ 50
8.2. Resultados observados para la prueba de funcionamiento.​ 50

9. Conclusión​ 52
6. Referencias​ 53
Anexos​ 55

9.Anexo 1​ 55

➢​Índice de tablas

Tabla N°1 “Historial de Cambios”.​ 1
Tabla N°2 “Roles”.​ 11
Tabla N°3 “Actividades”​ 13
Tabla N°4 “Gestión de riesgos”​ 17
Tabla N°5 “Costo de Hardware”​ 20
Tabla N°6 “Costo Trabajador”​ 21
Tabla N°7 “Costo Software”​ 21
Tabla N°8 “Costo Total”.​ 22

➢​Indice de imagenes

Figura 1: Carta Gantt.​ 15
Figura 2: Flujo de comunicación del sistema.​ 28
Figura 3: Wireframe GUI.​ 29
Figura 4: “DCL”​ 31
Figura 5: “Código Control_Automatico_Archivo_Base.py”.​ 34
Figura 6: “Codigo Archivo_Control_Teclado.py”.​ 36
Figura 7: “Código Archivo_Implementado_Tkinter.py”.​ 38
Figura 8: Código parte GUI Archivo_Implementado_Tkinter.py.​ 41
Figura 9: “Código parte Teclado Archivo_Implementado_Tkinter.py”.​ 43
Figura 10: Código comandos Archivo_Implementado_Tkinter.py.​ 45
Figura 11: Interfaz Gráfica de Usuario.​ 46
Figura 12: DEMO.​ 51
Figura 13: Botones Seleccionados.​ 51
Figura 14: LEGO SPIKE PRIME.​ 55
Figura 15: EXTENSION LEGO SPIKE PRIME.​ 56
Figura 16: Notebook loq gen 9.​ 56
Figura 17: GALAXY TAB S8 PLUS.​ 57
Figura 18: IDEAPAD 3 15.​ 58
Figura 19: GAMER ASPIRE 5.​ 59
Figura 20: HP PAVILION.​ 59
Figura 21: Bloques usados.​ 59

1.​ Panel General

1.1.​ Introducción

​

En la industria minera se evidencia múltiples veces que la clasificación de materiales

es una parte importante de la operación; sin embargo, la ejecución ineficiente de esto

puede llevar a cuellos de botella operativos. Aún más grave estos procesos pueden

llevar a la exposición de los trabajadores a entornos peligrosos si no están

debidamente automatizados, evidenciando el problema claramente: La necesidad de

implementar un sistema que garantice eficiencia sin comprometer la integralidad de

los trabajadores.

Bajo esta premisa, en este informe se demostrará el trabajo colaborativo realizado por

el equipo para cumplir el objetivo de mejorar la productividad, optimizar los procesos y

elevar los estándares de seguridad de un equipo de minería. Para lograrlo se

aplicaron conocimientos de ingeniería mediante una simulación de un clasificador de

materiales fabricado con el set de Lego Spike Prime.

A partir de lo anterior, la estrategia seguida para la organización de actividades y

asignación de responsabilidades se detalla en los siguientes apartados.

1.2.​ Objetivos

1.2.1.​Objetivo General

Desarrollar y programar un robot con el kit LEGO Spike Prime que sea capaz

de clasificar bloques en una casilla designada según su color, simulando un proceso

de clasificación de materiales de una industria minera.

1.2.2.​Objetivos Específicos

○​ Experimentar para ser capaz de usar correctamente el set Lego Spike Prime

hasta el punto de poder aplicar correctamente todas las funciones necesarias

para crear el robot clasificador en un tiempo estimado de 2 semanas.

○​ Asignar roles a cada integrante del grupo para mantener un responsable en

cada área de trabajo y poder realizar el proyecto de forma eficiente, en un

plazo de 1 semana.

○​ Planificar y ensamblar un prototipo inicial con el set LEGO Spike Prime que

pueda detectar con el sensor los colores de los bloques y mover los motores

respectivamente del color, en un plazo de 3 semanas.

○​ Programar con el lenguaje de programación Python en la aplicacion LEGO

Spike un codigo capaz de conectar el sensor de color junto con los motores al

mismo tiempo para buscar la rapidez del ordenamiento de bloques, en el

tiempo que el ensamblador lo tenga que necesitar.

○​ Construir el robot que cumpla con una buena coordinación y velocidad con el

set Lego Spike Prime, librería Pybricks y Visual Studio Code, además que sea

capaz de clasificar correctamente cada bloque en una casilla, antes de la

presentación final.

○​ Documentar y subir los archivos en formato PDF a la plataforma de Redmine

para registrar cada avance que se va a realizar hasta la fecha final del

proyecto.

○​ Implementar una interfaz para el robot clasificador que sea capaz de realizar

movimientos de este, dependiendo de los botones de la interfaz, utilizando

Tkinter y Visual Studio Code, una vez terminado el robot, en un plazo de 3

semanas.

○​ Definir un repositorio en GitHub para tener un historial de cambios, además de

un sitio donde cada integrante será capaz de ver el código, dentro de la web

de GitHub, hasta que se finalice el trabajo de codificación.

○​ Crear un manual de usuario con las instrucciones de cómo usar el robot, en

Microsoft Word, al finalizar la construcción y codificación del robot, en un plazo

de 1 semana.

○​ Realizar una presentación que sea capaz de demostrar que el robot

clasificador puede realizar una buena clasificación de bloques, utilizando la

web Canva, en un tiempo estimado de 1 semana.

1.3.​ Restricciones

Las restricciones son requerimientos mínimos que deben ser obligatoriamente

cumplidos.

Las restricciones que se tiene en este proyecto son:

o​ Si es necesario, utilizar la extensión de Lego Spike Prime.

o​ Solo se debe utilizar la plataforma Redmine para los documentos y avance del

proyecto.

o​ Se debe utilizar el Set de Lego Spike Prime.

o​ Tiempo limitado para la finalización del proyecto, debido al término del

semestre.

o​ Cantidad de integrantes limitada a 5.

o​ La disponibilidad del robot para su uso sea codificación y construcción, está

limitada al horario del departamento de ICCI (Ingenieria civil en computacion e

Informatica).

o​ Robot debe ser capaz de reconocer el bloque y poder clasificarlo dependiendo

de su color.

o​ La conexión entre el pc y el robot debe ser inalámbrica.

1.4.​ Entregables

-Bitácoras: Son informes semanales que describen el avance del equipo en el

proyecto, abarcando actividades realizadas, dificultades encontradas,

recomendaciones para mejorar y acciones tomadas. Preparadas por los integrantes

del grupo, ofrecen un panorama exhaustivo para apoyar decisiones estratégicas,

asignan responsabilidades y resaltan asuntos a tratar en grupo.

-Carta Gantt: Representación visual de la programación del proyecto, mostrando en

una línea de tiempo las tareas, su duración y secuencia, facilitando la gestión del

tiempo y los recursos al visualizar la evolución de las actividades a lo largo del

proyecto.

-Informes de avance: Este documento detalla la organización y estrategia para

alcanzar los objetivos de la asignatura. Se abordará la asignación de roles, las metas

del equipo y las medidas que implementarán para lograr el propósito académico.

Además, se comparten las primeras impresiones durante el proceso de desarrollo y

se presenta la documentación relevante recopilada a lo largo del semestre.

-Presentaciones: Se harán presentaciones con el formato de PDF, para presentar la

información recopilada en los informes entregados, cada presentación tratará los

temas de cada informe ya sea avance o posteriores a él.

-Manual de Usuario: Se desarrolla un manual de usuario para el funcionamiento

correcto del robot enfocado en el aprendizaje para el usuario.

-Código base del cliente y servidor, publicados en un repositorio en Github.

2.​ Organización del Personal

La organización en un grupo es importante para lograr la finalización de este

proyecto, como también un buen ambiente en el grupo.

2.1.​ Descripción de los Roles

Jefe de proyecto: Representante del equipo, supervisa y organiza el progreso del

proyecto.

Ensamblador: Encargado del montaje y el armado de las piezas, monitorea el

cumplimiento de las funcionalidades del robot, en conjunto con el programador.

Programador: Encargado del área de la codificación y la lógica de funcionamiento del

robot, trabajando en colaboración con el ensamblador para integrar el software con el

hardware.

Documentador: Encargado de registrar el avance del proyecto y la redacción de los

informes. Para cumplir su función, debe mantener una comunicación constante con

todos los miembros del equipo, con el fin de recopilar y unir la información de cada

área.

2.2.​ Personal que Cumplirá los Roles

Tabla N°2 “Roles”.

Rol Responsable

Jefe de proyecto Bastian Hernandez

Ensamblador Alex Campillay

Programador Saoud Ahmed

Documentador Enzo Llancabure

Marcos Caldas

Bastian Hernandez

2.3.​ Métodos de Comunicación

Los principales medios de comunicación que usarán a lo largo del desarrollo

del proyecto serán los siguientes:

-WhatsApp: Se utilizará para mensajería haciendo uso de los grupos que

ofrece la Aplicación.

-Github: Como repositorio de codificación con avance e historial de versiones

de este mismo, es una comunicación enfocada a tareas técnicas.

-Discord: Reuniones a distancia aprovechando los canales de texto y voz que

ofrece esta Aplicación.

-Horario del Taller de Clase: Reuniones presenciales y avance de forma

presencial para comunicar el avance del proyecto mismo.

3.​ Planificación del Proyecto

3.1.​ Actividades

Tabla N°3 “Actividades”

O.E Nombre Encargado

O.E.1 Dominar el LEGO Spike Prime para una

óptima creación de Robot.

Todos los integrantes.

O.E.2 Asignación de los Roles para cada

integrante del grupo.

Todos los integrantes.

O.E.3 Diseño y Ensamblaje del primer

prototipo con el set LEGO Spike

Prime

Alex Campillay,

 Bastian Hernandez.

O.E.4 Programación del Robot Lego encargado

de clasificar.

Saoud Ahmed

Marcos Caldas

O.E.4 Codificación en Python para el uso del

robot.

Saoud Ahmed

Marcos Caldas

O.E.4 Adopción de Pybricks con Visual Studio

Code.

Saoud Ahmed

Marcos Caldas

O.E.5 Creación del 2do Prototipo Lego. Alex Campillay,

Bastian Hernandez,

Enzo Llancabure.

O.E.5 Optimización del Prototipo Lego. Alex Campillay,

Bastian Hernandez,

Enzo Llancabure.

O.E.5 Construcción final del robot LEGO

clasificador.

Alex Campillay,

Bastian Hernandez,

Enzo Llancabure.

O.E Nombre Encargado

O.E.5 Pruebas Finales del Robot. Todos los integrantes.

O.E.6 Documentación y Registro en la

plataforma Redmine.

Saoud Ahmed,

Bastian Hernandez,

Marcos Caldas.

O.E.6 Entrega de los informes de avance. Todos los integrantes.

O.E.6 Entrega de las presentaciones de avance. Todos los integrantes.

O.E.7 Implementación de la Interfaz de control

para el Robot LEGO clasificador.

Marcos Caldas,

Saoud Ahmed,

Alex Campillay.

O.E.8 Gestión del Repositorio Github

con el código de control del Robot LEGO

clasificador.

Todos los integrantes.

O.E.9 Elaboración del Manual de Usuario

para tener las instrucciones de

uso del Robot LEGO clasificador.

Todos los integrantes.

O.E.1

0

Presentación del Robot Clasificador para

una demostración sólida del Robot

LEGO clasificador.

Todos los integrantes.

3.2.​ Carta Gantt

 Esta herramienta permite visualizar la secuencia de las actividades, organizadas

en fases como la codificación, el ensamblaje y la documentación. A través de este

diagrama, se muestra el porcentaje de avance de cada tarea, ayudando a la

organización del grupo a la hora de completar las tareas.

Figura 1: Carta Gantt.

3.3.​ Gestión de Riesgos

Para garantizar el cumplimiento de los objetivos del proyecto en los plazos

establecidos, se ha elaborado una tabla de gestión de riesgos. Esta herramienta

permite identificar, analizar y clasificar los posibles contratiempos que podrían afectar

el desarrollo del prototipo robótico y la planificación general.

A continuación, se definen los niveles de severidad establecidos para clasificar cada

riesgo según su impacto en el cronograma y en la operatividad del equipo:

1.​ Impacto Crítico: Problema al cual se le debe otorgar la máxima prioridad de

resolución por parte del equipo, del caso contrario puede impactar en la

entrega puntual del proyecto por retrasos o incluso un reinicio total de este.

2.​ Impacto Alto: Evento de máxima gravedad que compromete la viabilidad del

proyecto. Requiere medidas inmediatas, pudiendo implicar el reinicio de

etapas completas o la redefinición del alcance.

3.​ Impacto Medio: Riesgo que genera retrasos significativos en una o varias

etapas clave. Exige una respuesta prioritaria para evitar que el desfase afecte

la fecha de entrega final.

4.​ Impacto Bajo: Riesgo menor o imprevisto cotidiano que no altera la ruta del

proyecto y puede ser resuelto con acciones simples sin afectar los entregables

principales.

Tabla N°4 “Gestión de riesgos”

Riesgo Nivel de

Impacto

Acción Remedial

 Daño grave de

hardware

1 Verificar conexión del puerto,

en caso de daños irreparables

conseguir repuestos

inmediatamente.

Horario insuficiente para

el cumplimiento de

tareas en conjunto

2 Coordinar los horarios

disponibles del grupo.

Desempeño del robot

poco eficiente

2 Ensamblar un robot más

adecuado siguiendo guías en

línea o un nuevo diseño

adaptándolo a lo requerido.

Problema a la hora de

experimentar con el

robot.

2 Buscar la forma de modificar la

posición de las piezas para que

el robot cumpla su función.

Falla en el registro de

redmine
2 Comunicar al profesor para

buscar una solución.

Ausencia de piezas 2 Solicitar la extensión de Lego

Spike o pedir piezas al

ayudante.

 Error en la codificación

2 Corregir errores sintácticos y

lógicos en lo posible, de no

serlo investigar una solución o

explorar otro tipo de solución.

Falta de internet en la

sala

3 Compartir internet del celular o

usar cables ethernet.

Atraso en el

cumplimiento de tareas

3 Hablar con el grupo para

avanzar el proyecto fuera de

clases.

Integrante falta a una

clase

4 El Integrante tiene la

responsabilidad de ponerse al

día con lo que se avanzó en

esa clase.

4.​ Planificación de los Recursos

​ Este punto muestra los recursos requeridos para la ejecución del proyecto, el

cual se divide en herramientas físicas y digitales. Para la tabla de costo trabajador,

se le asigna un sueldo basado en un tarifa por hora para cada rol, se toma en cuenta

la complejidad de cada rol para la asignación de tarifa. El cálculo final es la suma de

horas totales del equipo.

4.1.​ Hardware

○​ Set Lego Spike Prime.

○​ Set Lego Spike Prime Extension.

○​ Computador con el sistema operativo necesario para poder

programar las instrucciones para el robot.

○​ Tablets para poder hacer la documentación necesaria.

4.2.​ Software

○​ Sistema operativo Windows para programar las funciones del robot.

○​ Redmine, página para la organización del proyecto.

○​ Canva.

○​ Plataforma Lego Education Spike (Code).

○​ Flutter para creación de aplicaciones.

○​ Pybricks en conjunto con VS code para la codificación pero más

centralizada para los robots LEGO.

4.3.​ Estimación de Costos

Costo de Hardware:

Tabla N°5 “Costo de Hardware”

Producto Cantidad Precio (CLP)

Set Lego Spike 1 $ 622.879 [1]

Extension Lego Spike 1 $ 167.202

Notebook LOQ Gen 9
1 $ 769.993

Samsung Galaxy Tab

S8 Ultra

1 $ 1.150.000

 Lenovo IdeaPad 3 15 1 $ 699.990

Notebook Aspire G

A515-58GM-56ZZ-1

1 $ 1.049.990

HP Pavilion Laptop

14-dv2xxx

1 $ 1.500.000

Total: 7 $ 6.005.054

Costo de Trabajador:

Tabla N°6 “Costo Trabajador”

Rol Horas /

Mes

Horas

Extra

Precio / Hora (CLP)

Jefe de proyecto 18 horas 5 horas $ 10.555

Programador 18 horas 5 horas $ 7.500

Ensamblador 18 horas 5 horas $ 7.000

Documentador 18 horas 5 horas $ 3.500

Total : - - $ 2.736.000

Costo de Software:

Tabla N°7 “Costo Software”

Software Precio (CLP)

Microsoft Office $ 8.990

Visual Studio Code $0

Redmine $0

Pybricks $0

Flutter $0

Total $8.990

Destacado:

○​ La contabilización de las horas trabajadas comienza a partir de la formación

del grupo de trabajo, la fecha de inicio fue el día 22 de septiembre del 2025.

○​ Para la contabilización de las horas de trabajo, se tuvo en cuenta el tiempo de

trabajo en clases.

○​ Para la contabilización de las horas extras, se tuvo en cuenta el tiempo en las

que se trabajó fuera del horario de clase.

○​ El cálculo por hora se basa en el sueldo mensual promedio de cada uno de los

cargos del proyecto dividido en una jornada laboral de 180 horas mensuales.

○​ Para el pago de horas extras se aplicó un pago doble sobre el valor de la hora

normal.

○​ Las horas totales generales sin contar horas extras en este proyecto fueron:

•​ 42 Clases desde la fecha de inicio * 1,5 horas cada clase = 63 horas

totales

•​ Horas extras = definidas como 5 horas por mes, asumiendo que son 3

meses de clases desde septiembre 22 hasta 31 de diciembre

5 * 3 = 15 + 2,5 (horas de septiembre extra) = 17,5 horas extras

totales

​ Con estos datos se estimó el costo total del trabajador.

Total de Costo:

Tabla N°8 “Costo Total”.

Costo Hardware $ 6.005.054

Costo Empleados $ 2.736.000

Costo Software $ 8.990

Total : $ 8.750.044

5.​ Análisis y Diseño

5.1 Especificación de requerimientos

Antes de especificar los requerimientos funcionales y no funcionales, se debe

establecer que el cliente es una empresa minera, representada generalmente por el

área de ingeniería y automatización de maquinaria, los cuales financian la

implementación del sistema robótico encargado para clasificar los materiales, siendo

su rol principal asegurar que la solución esperada por la empresa cumpla con los

objetivos de mejorar la seguridad de los trabajadores, aumentar la eficiencia y

optimizar la clasificación de materiales.

Y tomando en cuenta que el usuario no es necesariamente la misma empresa y que

la probabilidad de que interactúe de forma directa con el robot diariamente es

escasa, se puede representar al usuario como un operador de maquinaria dentro de

la empresa. De esta manera teniendo en cuenta esos dos puntos se pueden definir

los requerimientos funcionales y no funcionales.

5.1.1 Requerimientos funcionales

Algunos de los requerimientos funcionales básicos que debe cumplir el robot a la

hora de ser implementado y accionado son:

RF1 : El robot debe ser capaz de identificar materiales distintos representados por

cuatro colores de bloques de lego (Rojo, Amarillo, Azul, Verde).

RF2 : El robot debe ser capaz de encolar varios bloques de lego para luego

atenderlos, una estructura idéntica al funcionamiento de una cola FIFO (First In, First

Out) donde sale el primero que entra.

RF3 : El robot debe ser capaz de depositar el bloque de lego identificado por color

en su compartimento correspondiente (los 4 compartimentos cada uno asignado a

uno de los 4 colores de bloques de lego mencionados en el RF1)

RF4 : El robot debe ser capaz de realizar de manera automática los movimientos

mencionados en los requerimientos funcionales anteriores (RF1 , RF2, RF3).

Además de poder realizarlos de manera manual por el usuario mediante los botones

de la interfaz.

RF5-Software : El sistema debe procesar la lectura del sensor de color y enviar la

orden correcta a los motores según el color detectado.

RF6-Software : El software debe ser capaz de permitir el uso manual del robot con

la interfaz implementada (Tkinter).

5.1.2 Requerimientos no funcionales

Por otro lado algunos de los atributos de calidad del software que a los stakeholders

les podrían interesar para cualificar el proyecto serían:

-​ Disponibilidad : El robot deberá mantener una disponibilidad mínima del 98%

durante la jornada operativa de la empresa minera. Ante una falla, el sistema

deberá restablecer su operaciones en un tiempo máximo de 10 minutos,

garantizando la eficacia del proceso.

Métrica de Evaluación : Porcentaje de tiempo operativo

-​ Robustez : El sistema debe ser capaz de manejar errores de sensores,

entradas incorrectas o interrupciones momentáneas de comunicación sin

detenerse completamente.

Métrica de Evaluación : Número de fallos no controlados.

-​ Rendimiento : El robot automatizado debe responder a las órdenes del

operador o del sistema de control en un tiempo máximo de 1 segundo,

asegurando el flujo de trabajo eficiente, además deberá mantener su

desempeño sin interrupciones durante al menos 8 horas de operación

continua.

Métrica de Evaluación : Tiempo promedio de respuesta a comandos y

estabilidad del rendimiento durante turno de trabajo.

-​ Usabilidad : La interfaz del control del sistema debe ser intuitiva, clara y

autoexplicativa, permitiendo que un operador capacitado pueda utilizar el

robot de forma autónoma tras una breve capacitación donde se le enseñaria:​

​ - El funcionamiento de los botones de la interfaz.

​ ​ ​ - El movimiento del robot asociado a cada botón de la interfaz.

​ ​ ​ - Uso del manual de usuario para cualquier problema que pueda ocurrir

​ ​ ​ en la operación del robot.

Métrica de Evaluación : Tiempo de capacitación requerido y cantidad de

errores de operación cometidos.

5.2 Arquitectura de software

La arquitectura de software describe los componentes principales del sistema, la

forma en que se organizan y cómo se comunican entre sí para cumplir con los

objetivos del proyecto.

En este proyecto se utiliza una arquitectura cliente-servidor, donde la aplicación de

escritorio (Tkinter) actúa como cliente y el hub del robot LEGO Spike Prime actúa

como servidor, el cliente captura la interacción del usuario, genera comandos y los

envía por Bluetooth. El servidor recibe, interpreta y ejecuta las instrucciones sobre

los motores y sensores mediante Pybricks.

●​ Modelo de arquitectura cliente-servidor

en la arquitectura cliente-servidor, el sistema se divide en dos partes

principales:

Cliente(PC-interfaz Tkinter): componente del sistema encargado de la

interacción directa con el usuario. Su función principal es capturar las

acciones (botones y teclas), interpretarlas y generar solicitudes o comandos

que son enviados al servidor a través del medio de comunicación definido. El

cliente no ejecuta acciones físicas, sino que actúa como intermediario entre el

usuario y el sistema de control.

servidor(Hub SPIKE Prime-Pybricks): componente del sistema responsable

de recibir, procesar e interpretar las solicitudes enviadas por el cliente. a partir

de dichas solicitudes, el servidor ejecuta la lógica necesaria para controlar los

recursos físicos del sistema, como motores y sensores, realizando las

acciones correspondiente en este proyecto, el servidor traduce los comandos

recibidos en instrucciones comprensibles en este proyecto el servidor traduce

los comandos recibidos en instrucciones comprensibles para el

microcontrolador del robot y gestiona su ejecución.

Este modelo permite separar la lógica de control del robot de la interfaz gráfica,

facilitando el mantenimiento, la depuración y la escalabilidad del sistema.

●​ componentes del sistema

el sistema está compuesto por los siguientes elementos:

Cliente lógico:

Desarrollado en Python + Tkinter.

Proporciona la interfaz para el usuario.

Permite al usuario controlar el robot sorter.

Envía comandos de texto al robot utilizando Bluetooth Low Energy(BLE)

mediante pybircksdev.

Solo se encarga del envío de instrucciones por lo que no controla

directamente el hardware.

Interfaz gráfica de usuario (GUI-Tkinter):

Forma parte del cliente lógico.

Permite la interacción directa del usuario.

Botones para conectar, modo automático, stop y control por colores.

Medio de comunicación (Bluetooth Low Energy):

Es la línea de comunicación entre el cliente y el servidor.

​ ​ Usa búsqueda y conexión BLE(find_device, PybricksHubBLE).

Permite el envío de comandos en tiempo real.

No procesa información, solo se encarga de transmitir los datos

generados por el cliente.

Puente de comunicación y concurrencia (Worker BLE):

Se implementa con un hilo (thread) mas un event loop de asyncio.

Mantiene una cola de comandos para no bloquear la GUI.

Conecta con el hub una sola vez y ejecuta acciones según comandos en cola.

Servidor lógico:

Código desarrollado en Python, creado y gestionado en el entorno de

desarrollo Visual Studio Code(VS Code), y ejecutado en el hub del robot

LEGO SPIKE Prime mediante el entorno Pybricks;

​ Recibir comandos enviados a través de BLE..

​ Interpretar los mensajes recibidos.

​ Traducir los comandos de alto nivel a instrucciones comprensibles por

​ el microcontrolador.

​ Controla motores y sensores del robot según la

​ Instrucción recibida.

​ Puede devolver información de estado si el sistema lo requiere.

●​ Flujo de comunicación del sistema

El flujo de trabajo comienza con la interacción del usuario a través de la interfaz

gráfica de la aplicación de escritorio, desarrollada en Tkinter. La interfaz interpreta

las acciones realizadas por el usuario, tales como presionar botones o utilizar el

teclado, y genera un comando de texto correspondiente a cada acción.

Dicho comando es enviado mediante Bluetooth Low Energy (BLE) al hub del robot

LEGO SPIKE Prime. El servidor lógico, implementado mediante Pybricks y ejecutado

en el hub, recibe el comando, lo interpreta y lo traduce a instrucciones internas

comprensibles para el microcontrolador del dispositivo.

Una vez interpretadas, estas instrucciones son ejecutadas sobre los motores y

sensores del robot, permitiendo el control del sistema tanto en modo manual como

en modo automático. El estado de ejecución o eventos relevantes, como el color

detectado, pueden ser enviados de vuelta al cliente para su visualización en la

interfaz gráfica.

el control del robot se realiza de la siguiente manera:

El posicionamiento del robot se controla mediante comandos generados desde el

teclado o con botones de la interfaz.

El motor de empuje se acciona mediante comandos específicos asignados a

controles independientes

El motor automático permite que el robot actúe de forma autónoma utilizando la

información proporcionada.

Figura 2: Flujo de comunicación del sistema.

●​ Ventajas de la arquitectura utilizada

la arquitectura cliente-Servidor utilizada ofrece múltiples ventajas:

​ Separación clara entre interfaz gráfica y control.

​ Mayor facilidad para depuración y pruebas.

​ Escalabilidad para agregar nuevas funciones.

​ Reutilización del código del robot con distintas interfaces de control.

Esta arquitectura permite que la aplicación de escritorio se enfoque

exclusivamente en la experiencia del usuario y visualización de estado,

mientras que el robot se encarga del control del hardware, mejorando la

organización general del sistema y facilitando futuras modificaciones.

5.3 Diseño inicial de la interfaz gráfica de usuario (GUI)

En esta sección se presenta el diseño inicial de la interfaz gráfica de usuario (GUI)

del sistema de control del robot sorter. Este diseño corresponde a un wireframe de

baja fidelidad, cuyo objetivo es definir la estructura general de la aplicación, la

disposición de sus elementos y la interacción básica del usuario, sin considerar

detalles visuales, tipografías o estilos gráficos finales.

El wireframe permite planificar la interfaz antes de su implementación, facilitando la

comprensión del funcionamiento del sistema y sirviendo como base para el

desarrollo posterior en Tkinter.

Figura 3: Wireframe GUI.

 Este wireframe se utilizó como referencia directa para la implementación de la

interfaz gráfica de la aplicación de escritorio. desarrollada en Tkinter. Cada elemento

del boceto fue traducido a componentes básicos de la biblioteca Tkinter, tales como

Frame, Button, Label, Canvas y controles de entrada por teclado.

El diseño inicial permitió definir de forma clara la distribución de la ventana, la

jerarquía de los elementos visuales y la lógica de interacción del usuario, antes de

aplicar ajustes visuales y funcionales definitivos. De esta manera, el uso del

wireframe facilitó una implementación más estructurada, reduciendo errores en

etapas tempranas y asegurando coherencia entre el diseño conceptual y la interfaz

final

6. Implementación

​ En esta sección del informe se presentan los resultados obtenidos hasta el

momento en el desarrollo del proyecto. Se incluye la justificación de la configuración

del robot a partir de principios físicos de movimiento básico estudiados en la

asignatura FI 035–Introducción a la Física, una descripción de los componentes más

relevantes del sistema implementado y una captura de la interfaz gráfica de usuario

ya desarrollada, junto con la explicación de sus elementos y funciones.

6.1 Fundamentos de los movimientos

Se presentan los distintos tipos de movimientos utilizados para el correcto

funcionamiento del robot desde la primera aplicación física-matemática hasta la del

último uso del robot. Se divide en tres secciones fundamentales que justifican a

detalle el funcionamiento matemático del robot, las cuales son:

●​ Caída del Bloque de Lego:

Se toma en consideración un diagrama de cuerpo libre para utilizar la segunda ley

de newton para determinar la aceleración ideal requerida para el correcto

funcionamiento; tomando en cuenta diferentes datos, tales como: Peso del Bloque,

Ángulo de inclinación de la caída y El roce efectuado del mismo plástico

(DINÁMICA).

Datos:

Masa (m): 0.00232 kg.

Coeficiente de roce cinético (uk): 0,654 (estimado para

plástico ABS).

Gravedad (g): 9.8 m/s^2.

Ángulo de inclinación(theta) : 60°.

​ Figura 4: “DCL”

Desarrollo: Analizar las fuerzas al ubicar el bloque sobre la superficie inclinada, que

actúan dos fuerzas opuestas en el eje del movimiento: componente horizontal Px

que favorece la caída y la fuerza de roce fk que se opone a ella.

Fuerza Normal (N): Es la fuerza de reacción perpendicular a la superficie.

N = m * g * cos(60) N = 0.00232 * 9.8 * 0.5 N = 0.01137 Newtons.

Fuerza de Roce Cinético (fk): Es la resistencia opuesta al movimiento, calculada

con el coeficiente estimado. fk = uk * N fk = 0.654 * 0.01137 fk = 0.00744 Newtons

Componente del Peso en el eje X (Px): Es la fuerza generada por la gravedad que

empuja el bloque hacia abajo por la rampa. Px = m * g * sen(60) Px = 0.00232 * 9.8

* 0.866

Px = 0.01969 Newtons

Teniendo los datos ya resueltos se aplica la segunda ley de Newton (Suma de

fuerzas = m * a) la cual dirá la aceleración resultante:

a = (Px - fk) / m a = (0.01969 - 0.00744) / 0.00232 a = 0.01225 / 0.00232 a = 5.28
m/s**2

El dato de la aceleración de 5,28 m/s**2 es la ideal, menor a ella obtendrán

resultados poco eficientes en relación al tiempo de ejecución y mayor a ella se

obtendrán múltiples errores desde caída con choques y el bloque expulsado hasta el

no reconocimiento del sensor de color.

●​ Cálculo del Tiempo Real de posicionamiento

El giro de clasificación opera en un ángulo simétrico de -35° a +35° donde el ángulo

0° representa el reposo del clasificador. A diferencia del motor de empuje, que

realiza un movimiento fijo (“golpe”), el motor de posicionamiento tiene trayectorias

que cambian debido al sensor de color para el correcto ordenamiento del bloque.

Determinación de la velocidad real (w) para calcular la eficiencia del giro se calcula

el recorrido total del robot de un extremo a otro, de -35° a +35°.

Distancia Máxima = 35 + 35 = 70°

Fórmula = t(max) = Diferencia Angular / velocidad real

La velocidad real está limitada por el mismo Hub del lego la cual es 300°/s .

t(max)= 70°/300°/s = 0.23 s

el tiempo de recorrido es 0,23 segundos, junto con la velocidad real que esta

limitada por el Hub del lego spike prime es lo mas eficiente debido a que el recorrido

por deteccion de color es minimo para girar y volver del reposo, los datos y

resultados son a base del peor caso posible, ir de izquierda a derecha, de extremo a

extremo.

●​ Eficiencia Motor de empuje (radio de empuje = 4 cm)

el motor de empuje se encarga de colocar los bloques en la sección indicada de su

color

se selecciona un recorrido de 180° para empujar el bloque, es eficiente ya que al

seleccionar no debe dar un giro completo, como si fuera 360°tardaría más en

ejecutarse, implementando así efectividad en el ángulo de empuje ya que da un ida

y retorno simple y rápido, junto con el tope máximo de velocidad admitida por el Hub

(300°/s) para validar que esta configuración ofrece una fuerza óptima en un tiempo

mínimo, se aplican las siguientes fórmulas:

Datos:

1.​ Velocidad Angular Máxima (omega): 300°/s (Límite operativo establecido en

el Hub).

2.​ Radio de Palanca (r): 4 cm (Longitud del brazo de empuje).

3.​ Desplazamiento (theta): 180°.

-Cálculo del tiempo de ciclo: determina cuanto tiempo tarda el brazo en completar el

empuje al color indicado:

t = desplazamiento/velocidad angular = 180°/(300°/s) = 0.6 segundos

-Cálculo de la Fuerza de empuje (Newtons): determina la fuerza con la que se

empuja el bloque (utilizamos el torque del motor = 18 N*CM).

FUERZA = TORQUE/RADIO = 18 N*CM/4CM = 4.5 NEWTONS

Los siguientes datos extraídos son necesarios ya que se necesita calcular la fuerza

de empuje para asegurar que el motor tiene potencia suficiente para mover el bloque

y añadimos velocidad para generar impacto teniendo en cuenta que buscamos la

eficiencia respecto al tiempo.

6.2 Descripción del sistema

El sistema utilizado para el control y manejo del robot se basa en Pybricks, una

plataforma que permite programar y controlar dispositivos robóticos de manera

eficiente. A través de Pybricks, es posible implementar distintas formas de control

del robot, lo que otorga flexibilidad al sistema y permite adaptarlo a diferentes

métodos de interacción y operación.

Forma 1: Control_Automatico_Archivo_Base.py

Este corresponde al código inicial del sistema y opera de manera automática, es

decir, no requiere la intervención directa de una persona para controlar el robot.

Además, este código sirve como base de referencia para el desarrollo de los demás

programas utilizados en el proyecto, ya que establece la lógica principal de

funcionamiento del sistema.

Se puede ver el código en el repositorio github de este proyecto:

“LegoSpikePrimeProyecto1Sorting”.

Figura 5: “Código Control_Automatico_Archivo_Base.py”.

Explicación del código del servidor lógico

Línea 1–4:​

Se importan las librerías necesarias de Pybricks. Estas permiten utilizar el hub, los

motores, el sensor de color, los puertos físicos del robot y funciones auxiliares como

pausas de tiempo.

Línea 6:​

Se crea una instancia del PrimeHub, que corresponde al hub físico del robot y actúa

como el núcleo de control del sistema.

Línea 9:​

El sensor implementado en el robot se guarda como referencia en la variable

sensor_color, utilizando el puerto B. Este sensor se encarga de detectar el color del

https://github.com/saoudahmedlanchipa-code/LegoSpikePrimeProyecto1Sorting

bloque que ingresa al sistema.

Línea 10:​

Se inicializa el motor_posicion en el puerto A, el cual se utiliza para posicionar el

mecanismo en la casilla correspondiente.

Línea 11:​

Se inicializa el motor_empuje en el puerto D, encargado de empujar o disparar el

bloque hacia el lado correspondiente según el color detectado.

Línea 13:​

Se implementa un bucle while True, el cual permite que el robot funcione de manera

continua. El programa se mantiene en ejecución hasta que se detiene manualmente.

Línea 14:​

El color detectado por el sensor se almacena en la variable color_detectado, lo que

permite utilizar este valor en la lógica de decisión del sistema.

Líneas 16–36:​

En esta sección se encuentra el algoritmo principal de clasificación, el cual permite

distribuir los bloques en cuatro casillas distintas. Para ello, se utilizan estructuras

condicionales if y elif que evalúan el color detectado:

Si el color es rojo o amarillo, el motor de posición mueve el mecanismo hacia una

casilla específica.​

Si el color es rojo, el motor de empuje dispara el bloque hacia un lado mediante un

giro de −180°.​

Si el color es amarillo, el motor de empuje lo hace hacia el lado opuesto con un giro

de 180°.​

Si el color es verde o azul, el motor de posición se desplaza hacia otra casilla.​

Para el color verde, el motor de empuje gira 180°.​

Para el color azul, el motor de empuje gira −180°.​

De esta forma, el sistema clasifica automáticamente los bloques según su color y los

distribuye en la casilla correspondiente.

Línea 38:​

Se utiliza la función wait(10) para introducir una pequeña pausa, lo que evita lecturas

excesivamente rápidas del sensor y mejora la estabilidad del sistema.

Forma 2: archivo Archivo_Control_Teclado.py

En esta versión se ocupa de base el código anterior pero se implementa una forma

de manejar el robot, en este caso sería mediante teclas.

Figura 6: “Codigo Archivo_Control_Teclado.py”.

Puntos claves de este código:

​

Línea 6–7:

Se importan los módulos stdin y poll, los cuales permiten leer la entrada del teclado

en tiempo real y detectar cuándo una tecla es presionada por el usuario.

Línea 15:

Se crea la variable teclado utilizando poll(), la cual se encarga de monitorear

continuamente las entradas del teclado.

Línea 16:

Se registra la entrada estándar (stdin) en la variable teclado, habilitando la

lectura de las teclas presionadas.

Línea 19:

Dentro del bucle principal, se utiliza teclado.poll(0) para verificar si existe alguna

entrada del teclado disponible sin detener la ejecución del programa.

Línea 20:

La tecla presionada por el usuario se lee y se almacena en la variable key.

Líneas 21–36:

Se implementa una estructura condicional que asocia distintas teclas del teclado con

movimientos específicos del robot que son respectivamente con las casillas que se

tienen, además de los colores que son 4.

Forma 3: Archivo_Implementado_Tkinter.py

Este archivo corresponde a la versión final del sistema, la cual permite el control del

robot mediante teclas y una interfaz gráfica desarrollada con Tkinter. En este archivo

se integran y unifican las funcionalidades de los dos códigos desarrollados

anteriormente.

La principal novedad de este código es la implementación de la conexión mediante

Bluetooth, realizada a través de la librería pybricksdev.connections.pybricks, desde

la cual se importa el método PybricksHubBLE. Esta implementación permite utilizar

el Bluetooth como medio de comunicación entre el cliente y el hub. Además,

posibilita el envío de scripts al hub, los cuales, en este caso, corresponden a los

archivos desarrollados previamente, permitiendo su ejecución directa en el

dispositivo.

Figura 7: “Código Archivo_Implementado_Tkinter.py”.

Línea 106:

Se define la clase BLEWorker, la cual se encarga de gestionar la comunicación

Bluetooth entre el cliente y el hub utilizando Pybricks.

Líneas 107–114:

En el método __init__, se inicializan los componentes principales de la clase. Se

crea un nuevo bucle de eventos de asyncio, una cola asíncrona para el envío de

comandos, una cola de logs para registrar mensajes del sistema y un callback

(status_cb) que informa el estado de la conexión. Además, se crea un hilo de

ejecución independiente para manejar la comunicación Bluetooth sin bloquear la

interfaz gráfica. La variable hub se inicializa como None.

Líneas 115–116:

Se define el método log, el cual envía mensajes a la cola de logs para su posterior

visualización en la interfaz gráfica.

Líneas 118–120:

El método start verifica si el hilo de comunicación ya está activo. En caso de no

estarlo, inicia el hilo encargado de ejecutar la comunicación Bluetooth.

Líneas 122–123:

El método send permite enviar comandos al hub de forma segura desde otros hilos,

agregando dichos comandos a la cola asíncrona mediante el bucle de eventos.

Líneas 125–127:

El método privado _run configura el bucle de eventos de asyncio y ejecuta de forma

continua la función principal de comunicación.

Líneas 129–130:

En el método asíncrono main, se inicia el proceso de búsqueda del hub Bluetooth.

Se registra un mensaje indicando que el sistema está buscando el hub.

Líneas 131–136:

Se utiliza la función find_device para buscar el hub identificado como "SP----1". Si el

dispositivo no es encontrado, se registra el error y se notifica a la interfaz gráfica que

la conexión ha fallado.

Líneas 138–141:

Si el hub es encontrado, se crea una instancia de PybricksHubBLE, se establece la

conexión Bluetooth y se registra un mensaje indicando que la conexión fue exitosa.

Además, se actualiza el estado de conexión en la interfaz gráfica.

Líneas 142–146:

Se implementa un bucle infinito que espera comandos desde la cola. Cada comando

recibido es enviado al hub mediante la función execute, permitiendo la ejecución

remota de instrucciones en el robot.

6.2.1 Cliente

En el sistema desarrollado se distinguen dos tipos de cliente: el cliente físico y el

cliente lógico.

El cliente físico corresponde al dispositivo desde el cual el usuario interactúa

directamente con el sistema. Considerando únicamente el archivo final del proyecto,

el cliente físico es el computador, ya que la interfaz desarrollada con Tkinter se

visualiza en el monitor y permite la interacción directa del usuario a través del

teclado y la pantalla.

Por otro lado, el cliente lógico se refiere al software encargado de gestionar la

interacción con el usuario, específicamente la interfaz gráfica. En este sistema, dicho

rol lo cumple Tkinter, el cual se encarga de mostrar un botón para cada color,

facilitando el control manual del robot. Además, las teclas de dirección cumplen

funciones específicas: la flecha derecha representa la dirección 1, mientras que la

flecha izquierda corresponde a la dirección 2. Asimismo, la flecha hacia arriba

ejecuta un giro de 180° del motor de empuje hacia la derecha, y la flecha hacia

abajo realiza un giro de 180° del motor de empuje hacia la izquierda.

Figura 8: Código parte GUI Archivo_Implementado_Tkinter.py.

Líneas 152–156:​

Se define el método __init__, el cual inicializa la ventana principal de la aplicación.

En esta sección se configura el título y el tamaño de la ventana, estableciendo los

parámetros visuales iniciales de la interfaz gráfica.

Líneas 158–159:​

Se crea una cola de logs y una instancia de la clase BLEWorker, encargada de

gestionar la comunicación Bluetooth con el hub. Además, se establece un callback

para actualizar el estado de conexión en la interfaz.

Líneas 162–165:​

Se implementa el indicador de estado de conexión, compuesto por una etiqueta

descriptiva y un círculo que cambia de color. Este indicador muestra visualmente si

el sistema se encuentra conectado o no al hub.

Línea 167:​

Se crea un botón “Conectar”, el cual inicia el proceso de conexión Bluetooth al

ejecutar el método start del BLEWorker.

Líneas 170–175:​

Se agregan los botones correspondientes al modo automático y a la opción STOP,

los cuales envían los comandos "auto" y "stop" al servidor para controlar el

funcionamiento del robot.

Líneas 177–183:​

Se crea un panel destinado al control manual por color, donde se incluyen botones

para los colores rojo, amarillo, verde y azul. Cada botón envía el color

correspondiente al servidor cuando es presionado.

Líneas 186–189:​

Se implementa un indicador visual de color, representado por un círculo que cambia

dinámicamente según el color seleccionado o recibido, proporcionando

retroalimentación visual al usuario.

Líneas 192–194:​

Se define el área de registro de eventos, donde se muestran los mensajes del

sistema, tales como estados de conexión, comandos enviados y colores detectados.

Líneas 197–200:​

Se habilita el control del robot mediante el teclado, asociando las teclas de dirección

a comandos específicos que son enviados al servidor para controlar la posición y el

motor de empuje.

Líneas 204–208:​

Se define el método update_status, el cual actualiza el color del indicador de

conexión según el estado recibido desde el BLEWorker.

Líneas 210–212:

El método send_color envía el color seleccionado al servidor y actualiza el indicador

visual correspondiente en la interfaz.

Líneas 214–221:

El método update_color se encarga de cambiar el color del indicador gráfico según

el valor recibido, utilizando un diccionario que asocia los nombres de los colores con

su representación visual.

Líneas 223–236:​

El método update_logs revisa periódicamente la cola de logs, muestra los mensajes

en el área de registro y actualiza el indicador de color cuando se detectan mensajes

relacionados con el color. Este método se ejecuta de forma cíclica mediante el

temporizador de la interfaz.

Respecto a cómo se aprecia el cliente en este código, esto se realiza mediante el

uso del comando lambda, el cual ejecuta la función send("") (Esta función se

encuentra en la línea 122) con un String dentro de las comillas. Dicho string es

posteriormente enviado al servidor lógico.

El comando se envía cuando el usuario presiona el botón correspondiente a la

función que desea ejecutar. Además, el sistema permite el uso de las teclas arriba,

abajo, izquierda y derecha, las cuales también envían comandos al servidor para

controlar el robot.

Figura 9: “Código parte Teclado Archivo_Implementado_Tkinter.py”.

En el ejemplo se puede apreciar lo explicado anteriormente acerca del teclado, Up,

Down, Right y Left corresponden respectivamente a arriba, abajo, derecha e

izquierda. Además se envía un String que va ser la clave de un diccionario y de esa

forma el valor seria el script que se manda al hub, lo cual pertenece a la parte del

servidor lógico.

6.2.2 Servidor

En el sistema desarrollado se distinguen dos tipos de servidores: el servidor físico y

el servidor lógico.

El servidor físico corresponde al dispositivo encargado de recibir los mensajes

enviados por el cliente. En este proyecto, dicho servidor es el LEGO Technic Large

Hub, el cual recibe el código y se comunica con sus distintos puertos para ejecutar

las acciones correspondientes. Estas acciones incluyen el control de los motores, así

como el uso de sensores y otras funcionalidades integradas en el hub.

Por otro lado, el servidor lógico se refiere al software responsable de gestionar la

comunicación con el cliente, en este caso viene a ser con el método

PybricksHubBLE de la librería pybricksdev.connections.pybricks, el cual se explicó

en la Sección 6.2 y también los scripts que se envían con este método.

A continuación, se muestra los scripts que se crean en el cliente y luego se envian al

hub el cual el mismo servidor se encargará de interpretar y ejecutar en el cliente

físico:

Figura 10: Código comandos Archivo_Implementado_Tkinter.py.

Las instrucciones que se envían al hub corresponden principalmente a métodos de

la librería Pybricks, específicamente run_target y run_angle.

El método run_target se utiliza cuando se requiere mover un motor hacia una

posición específica. Este método es fundamental para posicionar el motor en las

casillas designadas dentro del sistema, asegurando un desplazamiento preciso y

controlado.

Por otro lado, el método run_angle se emplea para mover el motor en función de un

ángulo determinado. En este proyecto, este método se utiliza para accionar el

mecanismo que dispara el bloque hacia el lado izquierdo o derecho. Por esta razón,

los ángulos se representan como 180° y −180°, indicando la dirección del

movimiento.

Por último, los comandos se estructuran como un diccionario clave–valor, donde la

clave es proporcionada por los botones de la interfaz gráfica. Estas claves se envían

mediante PybricksHubBLE, permitiendo transmitir la instrucción correspondiente.

El valor asociado a cada clave corresponde al script que debe ejecutarse. Dicho

script es recibido por el servidor físico (LEGO Technic Large Hub), el cual se encarga

de interpretar la instrucción y ejecutar la acción correspondiente en el robot.

6.2.3 Interfaz gráfica de usuario (GUI)

Figura 11: Interfaz Gráfica de Usuario.

1.​ Indicador de estado de conexión

​ Representado mediante un indicador visual que refleja el estado actual

​ de la conexión con el robot. Inicialmente se encuentra en estado ​

​ desconectado. Al presionar el botón Conectar, el sistema inicia una

​ búsqueda de dispositivos Bluetooth, cambiando su estado a buscando.

​ En caso de detectar correctamente la señal específica del robot sorter,

​ el indicador cambia a estado conectado, proporcionando ​ ​

​ retroalimentación inmediata al usuario.

2.​ controles de operación (Modo Automático y Stop)

Este sector corresponde a los controles principales de ejecución del

sistema. El botón Modo automático envía una instrucción el hub para

iniciar el control autonomo del robot basado en la lectura del sensor de

color. El botón STOP permite detener de forma inmediata cualquier

acción en ejecución, garantizando un control seguro del sistema.

3.​ Control manual por color

Representado por un conjunto de cuatro botones identificados por color

(rojo, amarillo, verde y azul). Cada botón envía un comando específico

al hub del robot sorter, indicando la acción que debe ejecutar según el

color seleccionado. Este control permite al usuario intervenir

manualmente en el proceso de clasificación cuando sea necesario.

4.​ Indicador de color detectado

Este elemento visual muestra el color actualmente detectado por el

sensor del robot, Cuando no existe conexión o no se detecta ningún

color, el indicador permanece en estado neutro. Al recibir información

desde el servidor lógico, el indicador cambia al color correspondiente,

facilitando el ordenamiento y otorgando claridad visual al usuario.

5.​ Panel de registro (logs)

​ Corresponde al panel informativo donde se muestran los mensajes ​

​ generados por el sistema, tales como el estado de conexión, ​

​ comandos enviados y eventos relevantes (por ejemplo, ejecución de

​ instrucciones o deteccion de color) Este panel permite supervisar el

​ funcionamiento del sistema y facilita la depuración durante las pruebas.

7. Resultados

7.1 Estado actual del proyecto

El estado actual de la solución planteada (Maquinaria de clasificación de materiales)

se encuentra en una fase de funcionalidad completa respecto a su mecánica y

cumpliento de los requerimientos funcionales definidos.

El robot ha logrado exitosamente la automatización total de clasificar bloques

respecto a su color tanto de manera manual guiada por el usuario a través de la

interfaz gráfica implementada con tkinter. La solución es capaz de operar de manera

automática y manual replicando la tarea industrial sin exponer a funcionarios de

empresas mineras.

El robot ha logrado alcanzar los siguientes requerimientos funcionales:

-Identificacion de Materiales (RF1): Mediante el sensor de color el robot es capaz de

reconocer el color del bloque y separarlo en base a ello.

-Modo de operación Híbrida (RF4): El robot ha sido capaz de operar de manera

automática, o sea, un bucle de ordenamiento ejecutando la clasificación de estos

mismo bloques hasta no detectar ninguno. Como a su vez un modo manual que

implementa una serie de botones para que el usuario pueda clasificar los bloques el

mismo, todo esto gracias a la interfaz gráfica implementada.

-Flujo Continuo (RF2): El robot es capaz de reconocer y ordenar varios bloques de

LEGO sucesivamente , manteniendo un constante control de la clasificación.

-Clasificación de Celdas por su color (RF3): El robot es capaz de moverse y empujar

el bloque respecto al destino de su color, capaz de sincronizar el movimiento de

posición con el empuje del bloque para que el bloque sea colocado en base a su

color, enfatizando en su ordenamiento.

RF5-Software: El sistema cumple con el criterio de RF5 el cual es capaz de procesar

la lectura del sensor de color y enviar la orden a los motores, obteniendo un flujo

correcto de instrucciones.

RF6-Software: El software es capaz de permitir el uso manual del robot con la

interfaz implementada (Tkinter).

Respecto a los requerimientos no funcionales del robot el reporte actual son los

siguientes:

-Disponibilidad: La disponibilidad del robot depende netamente de su conexión con

el programa, ante una pérdida de conexión con el hub y Tkinter el sistema se detiene

por completo. Ante estos casos el robot debe ser reiniciado o desconectado con el

hub y reintegrar la misma conexión, siendo su restauración casi de manera

inmediata.

-Robustez: El robot no es tan robusto respecto al manejo mecánico debido a que si

llega a presentar obstrucción por bloques, necesita intervención inmediata para el

correcto flujo, carece de un mecanismo de auto barrido ante estancamiento.

-Rendimiento: El robot en condiciones de flujo normales tanto automáticas como

manual cumple con los tiempos de respuesta esperados.

-Usabilidad: Para mejorar la usabilidad y comodidad se implementó un esquema en

base a unos botones modelados simples, con frases explicativas de la funcionalidad

a lograr, primero se conecta a través de un botón simple llamado “Conectar” el cual

busca el hub y logra la conexión, una vez conectado el usuario puede seleccionar si

quiere un modo automático de ordenamiento el cual se ejecuta en bucle hasta no

detectar un color o también seleccionar control manual mediante la selección del

usuario a través de un botón en base al color previsto y se ejecuta de manera

inmediata el ordenamiento. La interfaz al ser clara y explicativa logra concisamente

un tiempo de capacitación corto.

7.2 Problemas encontrados y solucionados

​ Durante el desarrollo del proyecto, se encontraron diferentes problemas

asociadas al uso del framework Flutter para el desarrollo de la interfaz gráfica. Estos

problemas se relacionan con las limitaciones del framework como al contexto por el

que se quiere usar la interfaz gráfica. La aparición constante de estos problemas

generó un riesgo de impacto medio-alto según los niveles de riesgo, debido a que

puede afectar la continuidad del desarrollo. Frente a esto, y con el objetivo de

solucionar el problema, el equipo decidió dejar de usar el framework Flutter y optar

por una alternativa más acorde a las necesidades del proyecto, se implementó la

biblioteca Tkinter, la cual permitió un mayor control sobre el desarrollo de la interfaz

como también eliminar los problemas de fases anteriores.

8. Prueba de funcionamiento del sistema

8.1. Descripción de prueba de funcionamiento.

​ La prueba que se establece para probar el funcionamiento correcto del robot se

basa en el correcto posicionamiento del bloque de Lego en la rampa de encolado del

robot donde se debe deslizar por el riel hacia la zona donde se ubica el sensor de

color, el cual debera identificar el color del bloque dando paso al correcto

almacenamiento de este en su respectivo compartimiento dando fin al proceso

correspondiente al robot.

8.2. Resultados observados para la prueba de funcionamiento.

​

Durante la prueba de funcionamiento, el bloque de LEGO fue correctamente

posicionado en la rampa de encolado, deslizándose de forma continua hasta la zona

del sensor de color. El sensor identificó correctamente el color del bloque y el

sistema ejecutó la secuencia programada, moviendo los motores y depositando el

bloque en su compartimento correspondiente sin interrupciones ni errores. Con esto

se valida el correcto funcionamiento del proceso completo de clasificación.

La interfaz se utiliza mediante los botones mostrados anteriormente, el usuario solo

debe elegir el botón a seleccionar si será de manera manual o automática, todo a su

vez lleva al mismo escenario del resultado observado de la prueba de

funcionamiento.

Las acciones desde la interfaz de usuario independiente del botón seleccionado

mandan señal vía bluetooth al Hub para la correcta orden de ejecución, a

continuación adjunto un video e imagen del botón seleccionado para mostrar como

se envio la acción desde la interfaz de usuario y se representa visualmente la orden

de prueba que llega al robot, con ello validando como se completa la prueba

definitiva.

Demo Visual:

 WhatsApp Video 2025-12-29 at 11.29.38 AM.mp4

​ ​ ​ Figura 12: DEMO.

A continuación se adjunta los botones seleccionados acorde al video “Demo”,

demostrando cómo el robot ejecuta las órdenes desde la interfaz y cómo lleva a

cabo su prueba de funcionamiento completa.

 Figura 13: Botones Seleccionados.

https://drive.google.com/file/d/1wFjhjRlR_Ka2GDYoVPNypRHf7wR6TgCP/view?usp=sharing

9. Conclusión
 Este proyecto nos permitió desarrollar una solución robótica basada en LEGO,

cumpliendo el objetivo de simular un proceso de clasificación de materiales propio

de la industria minera. A lo largo del desarrollo se lograron avances significativos,

como la construcción de un robot capaz de clasificar bloques por color, la

implementación de modos de operación automático o manual, y el diseño de una

arquitectura cliente-servidor. Durante el proyecto se presentaron problemas

asociados a decisiones tomadas en fases iniciales, particularmente en relación con

el uso del framework Flutter para la interfaz grafica como tambien malas decisiones

para escoger un modelo de robot provocando que tuvieramos 3 prototipos, para

solucionarlo se tuvo que migrar a Tkinter y quedarnos con un modelo de robot en el

cual nos sintamos cómodos a la hora de optimizarlo.

6.​ Referencias

Saoud Ahmed Lanchipa. (2025). LegoSpikePrimeProyecto1Sorting [Repositorio]. GitHub.

https://github.com/saoudahmedlanchipa-code/LegoSpikePrimeProyecto1Sorting

Ubuy. (s. f.). LEGO Education SPIKE Prime Set (45678). Recuperado el 15 de octubre

de 2025, de

https://www.ubuy.cl/sp/product/GMEH1T4-lego-education-spike-prime-set.

Tradeinn. (s. f.). LEGO Education SPIKE Prime Expansion Set (45681). Recuperado

el 15 de octubre de 2025, de

https://www.tradeinn.com/kidinn/es/lego-juego-de-construccion-education-spike-prime

-expansion-set-45681/141562226/p.

Lenovo. (s. f.). Lenovo LOQ 15IAx9. Recuperado el 15 de octubre de 2025, de

https://www.lenovo.com/cl/es/p/notebooks/loq-laptops/lenovo-loq-15iax9/len101q0006.

RIPLEY. (s. f.). TABLET SAMSUNG GALAXY TAB S8 PLUS + KEYBOARD COVER

AMD RYZEN 9 8 GB RAM 12.4". Recuperado el 15 de octubre de 2025, de TABLET

SAMSUNG GALAXY TAB S8 PLUS + KEYBOARD COVER AMD RYZEN 9 8 GB

RAM 12.4"

Paris.cl. (s. f.). Notebook IdeaPad Slim 3 AMD Ryzen7 5825U 16GB 512GB SSD

Windows 11 Home 15.6" FHD Azul Abyss. Recuperado el 15 de octubre de 2025, de

https://www.paris.cl/notebook-ideapad-slim-3-amd-ryzen7-5825u-16gb-512gb-ssd-win

dows-11-home-156-fhd-azul-abyss-106450999.html.

Paris.cl. (s. f.). Notebook Gamer Acer Aspire G A515-58GM-56XX-1: Intel Core i5,

NVIDIA RTX 2050, 16GB RAM, 512GB SSD, 15.6" FHD. Recuperado el 15 de

octubre de 2025, de

https://www.paris.cl/notebook-gamer-aspire-g-a515-58gm-56xx-1-intel-core-i5-8-nucle

os-nvidia-rtx-2050-16gb-ram-512gb-ssd-156-700915999.html.

https://github.com/saoudahmedlanchipa-code/LegoSpikePrimeProyecto1Sorting
https://github.com/saoudahmedlanchipa-code/LegoSpikePrimeProyecto1Sorting
https://www.ubuy.cl/sp/product/GMEH1T4-lego-education-spike-prime-set
https://www.ubuy.cl/sp/product/GMEH1T4-lego-education-spike-prime-set
https://www.tradeinn.com/kidinn/es/lego-juego-de-construccion-education-spike-prime-expansion-set-45681/141562226/p
https://www.tradeinn.com/kidinn/es/lego-juego-de-construccion-education-spike-prime-expansion-set-45681/141562226/p
https://www.tradeinn.com/kidinn/es/lego-juego-de-construccion-education-spike-prime-expansion-set-45681/141562226/p
https://www.lenovo.com/cl/es/p/notebooks/loq-laptops/lenovo-loq-15iax9/len101q0006
https://www.reuse.cl/products/galaxy-tab-s8-plus-12-4-128gb-gris-reacondicionado
https://simple.ripley.cl/tablet-samsung-galaxy-tab-s8-plus-keyboard-cover-amd-ryzen-9-8-gb-ram-124-2000389779441p?s=mdco
https://simple.ripley.cl/tablet-samsung-galaxy-tab-s8-plus-keyboard-cover-amd-ryzen-9-8-gb-ram-124-2000389779441p?s=mdco
https://simple.ripley.cl/tablet-samsung-galaxy-tab-s8-plus-keyboard-cover-amd-ryzen-9-8-gb-ram-124-2000389779441p?s=mdco
https://www.paris.cl/notebook-ideapad-slim-3-amd-ryzen7-5825u-16gb-512gb-ssd-windows-11-home-156-fhd-azul-abyss-106450999.html?utm_source=chatgpt.com
https://www.paris.cl/notebook-ideapad-slim-3-amd-ryzen7-5825u-16gb-512gb-ssd-windows-11-home-156-fhd-azul-abyss-106450999.html?utm_source=chatgpt.com
https://www.paris.cl/notebook-ideapad-slim-3-amd-ryzen7-5825u-16gb-512gb-ssd-windows-11-home-156-fhd-azul-abyss-106450999.html?utm_source=chatgpt.com
https://www.paris.cl/notebook-gamer-aspire-g-a515-58gm-56xx-1-intel-core-i5-8-nucleos-nvidia-rtx-2050-16gb-ram-512gb-ssd-156-700915999.html?utm_source=chatgpt.com
https://www.paris.cl/notebook-gamer-aspire-g-a515-58gm-56xx-1-intel-core-i5-8-nucleos-nvidia-rtx-2050-16gb-ram-512gb-ssd-156-700915999.html
https://www.paris.cl/notebook-gamer-aspire-g-a515-58gm-56xx-1-intel-core-i5-8-nucleos-nvidia-rtx-2050-16gb-ram-512gb-ssd-156-700915999.html

HP. (2025). Notebook HP Pavilion Plus 14-ew1002la. Paris.cl. Recuperado el 27 de

noviembre de 2025, de Notebook HP Pavilion Plus 14-EW1002LA Intel Ultra 7 32GB

RAM 1TB SSD 14" 3K OLED Windows 11 Home HP | Paris.cl.

Glassdoor. (2025). Sueldos para Jefe de Proyecto en Chile (Basado en datos de

Claro Chile). Recuperado el 26 de noviembre de 2025, de KEY NOT FOUND:

ei-salaries.seo-metadata.el-details.title.singular | Glassdoor.

Glassdoor. (2025). Sueldos para el puesto de Programador en Chile. Recuperado el

26 de noviembre de 2025, de Sueldo: Programador (Noviembre, 2025) | Glassdoor.

Glassdoor. (2025). Salario Mensual para Computer Hardware and Software en Latam

(Chile). Recuperado el 26 de noviembre de 2025, de KEY NOT FOUND:

ei-salaries.seo-metadata.el-details.title.singular | Glassdoor.

Glassdoor. (2025). Salario mensual para Analista y Documentador Técnico en

TrackTec (Chile). Recuperado el 26 de noviembre de 2025, de KEY NOT FOUND:

ei-salaries.seo-metadata.el-details.title.singular | Glassdoor.

Bodega Digital. (2025). Licencia Microsoft Office 2024 Professional Plus (Código Digital).

Recuperado el 27 de noviembre de 2025, de Office 2024 Professional Plus • Bodega Digital.

BrickLink. (s.f.). Part 3001: Brick 2 x 4. Recuperado el 14 de diciembre de 2025, de

https://www.bricklink.com/v2/catalog/catalogitem.page?P=3001

Wikipedia. (2024). Acrilonitrilo butadieno estireno. En Wikipedia, la enciclopedia libre.

Recuperado el 15 de diciembre de 2025, de

https://es.wikipedia.org/wiki/Acrilonitrilo_butadieno_estireno.

Hurbain, P. (2024). LEGO Motor Characteristics: Comparative Test Data. PhiloHome.

Recuperado de https://www.philohome.com/motors/motorcomp.htm

http://paris.cl
https://www.paris.cl/notebook-hp-pavilion-plus-14-ew1002la-intel-ultra-7-32gb-ram-1tb-ssd-14-3k-oled-windows-11-home-924154999.html
https://www.paris.cl/notebook-hp-pavilion-plus-14-ew1002la-intel-ultra-7-32gb-ram-1tb-ssd-14-3k-oled-windows-11-home-924154999.html
https://www.glassdoor.es/Salario-mensual/Claro-Jefe-De-Proyecto-Rep%C3%BAblica-de-Chile-Salario-mensual-EJI_IE748887.0,5_KO6,22_IL.23,41_IN49.htm
https://www.glassdoor.es/Salario-mensual/Claro-Jefe-De-Proyecto-Rep%C3%BAblica-de-Chile-Salario-mensual-EJI_IE748887.0,5_KO6,22_IL.23,41_IN49.htm
https://www.glassdoor.es/Sueldos/chile-programador-sueldo-SRCH_IL.0,5_IN49_KO6,17.htm
https://www.glassdoor.es/Salario-mensual/LATAM-Computer-Hardware-And-Software-Rep%C3%BAblica-de-Chile-Salario-mensual-EJI_IE723829.0,5_KO6,36_IL.37,55_IN49.htm
https://www.glassdoor.es/Salario-mensual/LATAM-Computer-Hardware-And-Software-Rep%C3%BAblica-de-Chile-Salario-mensual-EJI_IE723829.0,5_KO6,36_IL.37,55_IN49.htm
https://www.glassdoor.es/Salario-mensual/TrackTec-Analista-Y-Documentador-T%C3%A9cnico-Rep%C3%BAblica-de-Chile-Salario-mensual-EJI_IE5427750.0,8_KO9,40_IL.41,59_IN49.htm
https://www.glassdoor.es/Salario-mensual/TrackTec-Analista-Y-Documentador-T%C3%A9cnico-Rep%C3%BAblica-de-Chile-Salario-mensual-EJI_IE5427750.0,8_KO9,40_IL.41,59_IN49.htm
https://bodegadigital.biz/producto/office-2024-professional-plus/?utm_source=bing&utm_medium=paid&utm_campaign=Microsoft-Pmax-CL&utm_content=1356799875279416&utm_term=Software&bingid=531247787&msclkid=173a92967e9111fb92a2fbbe855ca73b
https://www.bricklink.com/v2/catalog/catalogitem.page?P=3001
https://www.bricklink.com/v2/catalog/catalogitem.page?P=3001
https://es.wikipedia.org/wiki/Acrilonitrilo_butadieno_estireno
https://es.wikipedia.org/wiki/Acrilonitrilo_butadieno_estireno
https://www.philohome.com/motors/motorcomp.htm

Anexos
9.Anexo 1

Se adjunta fotografía de los precios reales de los productos (Hardware) mencionados en la

tabla de la sección de costo de hardware.

1.​ SET LEGO SPIKE PRIME.

Figura 14: LEGO SPIKE PRIME.

2.​ EXTENSION LEGO SPIKE PRIME.

Figura 15: EXTENSION LEGO SPIKE PRIME.

3.​ NOTEBOOK LOQ GEN 9.

Figura 16: Notebook loq gen 9.

4.​ SAMSUNG GALAXY TAB S8 ULTRA.

 Figura 17: GALAXY TAB S8 PLUS.

5.​ LENOVO IDEAPAD 3 15.

 Figura 18: IDEAPAD 3 15.

6.​ NOTEBOOK ASPIRE G.

 Figura 19: GAMER ASPIRE 5.

​ ​

7.​ HP PAVILION LAPTOP.

 Figura 20: HP PAVILION.

8.​ TAMAÑO DEL LEGO REAL PARA LA OBTENCIÓN DE DATOS APLICANDO LA

FÍSICA

 Figura 21: Bloques usados.

	UNIVERSIDAD DE TARAPACÁ
	 Tabla N°1 “Historial de Cambios”.
	

	➢​Índice
	
	➢​Índice de tablas
	➢​Indice de imagenes
	1.​Panel General
	1.1.​Introducción
	1.2.​Objetivos
	1.2.1.​Objetivo General
	1.2.2.​Objetivos Específicos

	1.3.​Restricciones
	1.4.​Entregables

	2.​Organización del Personal
	2.1.​Descripción de los Roles
	2.2.​Personal que Cumplirá los Roles
	Tabla N°2 “Roles”.

	2.3.​Métodos de Comunicación

	3.​Planificación del Proyecto
	3.1.​Actividades
	Tabla N°3 “Actividades”
	

	3.2.​Carta Gantt
	Figura 1: Carta Gantt.

	3.3.​Gestión de Riesgos
	Tabla N°4 “Gestión de riesgos”
	

	4.​Planificación de los Recursos
	4.1.​Hardware
	4.2.​Software
	4.3.​Estimación de Costos
	Tabla N°5 “Costo de Hardware”
	
	Tabla N°6 “Costo Trabajador”
	
	Tabla N°7 “Costo Software”
	Tabla N°8 “Costo Total”.
	

	5.​Análisis y Diseño
	5.1 Especificación de requerimientos
	
	5.1.1 Requerimientos funcionales
	
	5.1.2 Requerimientos no funcionales
	
	
	5.2 Arquitectura de software
	Figura 2: Flujo de comunicación del sistema.

	5.3 Diseño inicial de la interfaz gráfica de usuario (GUI)
	Figura 3: Wireframe GUI.

	6. Implementación
	
	6.1 Fundamentos de los movimientos
	​Figura 4: “DCL”
	6.2 Descripción del sistema
	Figura 5: “Código Control_Automatico_Archivo_Base.py”.
	Figura 6: “Codigo Archivo_Control_Teclado.py”.
	Figura 7: “Código Archivo_Implementado_Tkinter.py”.

	6.2.1 Cliente
	Figura 8: Código parte GUI Archivo_Implementado_Tkinter.py.
	Figura 9: “Código parte Teclado Archivo_Implementado_Tkinter.py”.

	6.2.2 Servidor
	Figura 10: Código comandos Archivo_Implementado_Tkinter.py.

	6.2.3 Interfaz gráfica de usuario (GUI)
	Figura 11: Interfaz Gráfica de Usuario.

	7. Resultados
	
	7.1 Estado actual del proyecto
	7.2 Problemas encontrados y solucionados

	8. Prueba de funcionamiento del sistema
	8.1. Descripción de prueba de funcionamiento.
	8.2. Resultados observados para la prueba de funcionamiento.
	​​​Figura 12: DEMO.
	 Figura 13: Botones Seleccionados.

	9. Conclusión
	
	6.​Referencias
	
	
	
	Anexos
	9.Anexo 1
	
	Figura 14: LEGO SPIKE PRIME.
	Figura 15: EXTENSION LEGO SPIKE PRIME.
	Figura 16: Notebook loq gen 9.
	 Figura 17: GALAXY TAB S8 PLUS.
	 Figura 18: IDEAPAD 3 15.
	 Figura 19: GAMER ASPIRE 5.
	 Figura 20: HP PAVILION.
	 Figura 21: Bloques usados.

