
F a c i l i t a d o r L o g í s t i c o
E l é c t r i c o T r a n s p o r t a d o r d e
E q u i p o

F.L.E.T.E.

A l u m n o s : M a r t i n A c e v e d o T u d e l a
 P a b l o A n d i a L o p é z
 F e l i p e D i a z A r a o s
 E d y n s o n T o l a F e r n a n d e z
 J o s é Y a m p a r a Y a m p a r a

P r o f e s o r : B a r i s K l o b e r t a n z Q u i r o z

A s i g n a t u r a : P r o y e c t o I

CONTENIDO

Objetivo
general

2

5

Objetivos
específicos

3
Introducción

1

Estructura
organizacional

4 6
Carta gantt

8

Gestión de
riesgos

Problemas
encontrados y
solucionados

7 9
Requerimientos

funcionales

11
Requerimientos
no funcionales

Arquitectura

10 12
Implementación

14
Prueba mínima

funcional
Manual de

usuario

13 15
Conclusión

Fundamentos de
los movimientos

INTRODUCCIÓN
El proyecto F.L.E.T.E. simula el transporte
automatizado de mineral en minería
subterránea utilizando el kit LEGO Spike
Prime y control remoto, con el objetivo de
mejorar la productividad y el rendimiento de
los transportes de cargamento pesado en
las mineras subterráneas. El proyecto
también busca crear un prototipo que
optimice y garantice la seguridad del
empleador y de los empleadores mientras
el vehículo esté en funcionamiento.

1

OBJETIVO GENERAL

El proyecto tiene como objetivo diseñar y
programar un prototipo robótico utilizando
exclusivamente el hardware del kit LEGO
Spike Prime, el cual ejecutará la simulación de
transporte automatizado de carga (bloques de
lego). Este sistema será operado mediante
una interfaz gráfica desarrollada en Python,
con la finalidad de demostrar la optimización
de procesos logísticos y la eficiencia de la
automatización en las mineras subterráneas.

2

O BJ E T I V O S E S P E C Í F I C O S

Estudiar los componentes del set Lego Spike Prime.
Proponer y seleccionar el mejor prototipo para el proyecto.
Construir el prototipo seleccionado.
Investigar y analizar las librerías disponibles en Python,
evaluando la compatibilidad con el set LEGO SPIKE Prime, para
asi poder tener un control completo del robot.
Desarrollar las funciones del robot (avance, retroceso, giro y
frenado), teniendo como base algoritmos eficientes y funciones
que optimicen el control de los movimientos básicos del robot.
Diseñar e implementar una interfaz gráfica en Python, mediante
la librería Tkinter, que permita recibir y gestionar las instrucciones
destinadas al robot.

3

ESTRUCTURA O R G A N I Z A C I O N A L

JEFE DE PROYECTO Representante del equipo, supervisa, organiza el progreso del proyecto y gestiona las
reuniones grupales (dailys).

ENSAMBLADOR Encargado del montaje, armado del robot y del conteo de piezas del set Lego Spike Prime.

PROGRAMADOR Encargado del área de la codificación y funcionamiento del robot.

4

DOCUMENTADOR Encargado de realizar las bitácoras semanales, llevar una retroalimentación sobre las dificultades
y actividades a realizar cada semana. También es el encargado de realizar el informe.

DISEÑADOR Encargado de la creación de la interfaz (GUI), presentaciones y logos o imágenes necesarias para
el correcto desarrollo del proyecto.

CARTA GANTT5

GESTIÓN DE RIESGOS

Daño momentáneo : Riesgo menor que no para el desarrollo del
proyecto. Generalmente tiene solución inmediata. (1)
Daño menor : Riesgo de poca importancia pero que es reiterativo. Puede
solucionarse en cualquier momento.(2)
Daño relevante : Riesgo que retrasa el correcto desarrollo del proyecto,
se debe resolver a la mayor brevedad posible.(3)
Daño Crítico : Riesgos que deben solucionarse de forma inmediata, de lo
contrario puede provocar la detención del proyecto.(4)

6

Riesgo Nivel de Gravedad Acción Remedial

Personal faltando al horario asignado
de trabajo 4

Preguntar la causa de su ausencia, para
poder gestionar otra reunión en
horarios disponibles

Falla de registro en la plataforma
redmine 4 Comunicar al administrador de la página

para encontrar una solución.

Recibir equipo defectuoso 4 Conseguir un reemplazo del equipo con
el encargado de las piezas

Horario insuficiente para el
cumplimiento de tareas en conjunto 3

Coordinación de una reunión fuera de
clases, en el mejor horario posible para
cada integrante

Desempeño del robot no es eficiente 2
Utilizar conocimientos propios para
reconocer las fallas o de última instancia
buscar información en línea

Incomprensión de fallo con bibliotecas 2 Buscar ejemplos en medios oficiales
para solucionar el problema

Error en la codificación 2
Investigar el origen del error e intentar
resolver el problema buscando
información en internet

Atraso en el cumplimiento de tareas 2
Priorizar tareas más importantes para
agilizar la productividad del proyecto.
Agendar reuniones en horarios libres si
es necesario

Ausencia de piezas 1
Verificar si fue ausencia de fábrica o
error de algún integrante, y buscar la
pieza perdida

Dificultades con la conexión wifi 1 Usar cable ethernet o compartir red por
datos móviles

GESTIÓN DE
RIESGOS6

Frecuencia Riesgos Acción remedial

20 Error en la codificación
Investigar el origen del error e
intentar resolver el problema
buscando información en internet

15 Dificultades con la conexión wifi Usar cable ethernet o compartir
red por datos móviles

8 Personal faltando al horario
asignado de trabajo

Preguntar la causa de su ausencia,
para poder gestionar otra reunión
en horarios disponibles

7 Incomprensión de fallo con
bibliotecas

Buscar ejemplos en medios
oficiales para solucionar el
problema

3 Atraso en el cumplimiento de
tareas

Priorizar tareas más importantes
para agilizar la productividad del
proyecto. Agendar reuniones en
horarios libres si es necesario

1 Vehículo se mueve con dificultad o
es incapaz de moverse libremente

Probar a intercambiar dentro de lo
posible piezas que generan el
problema

PROBLEMAS ENCONTRADOS Y
SOLUCIONADOS7

FUNDAMENTO DE LOS MOVIMIENTOS

Radio: 2 cm = 0,02 m
Diámetro: 4 cm = 0,04m
Circunferencia de la rueda = 0,1257m
 velocidad lenta = 400 °/s
velocidad normal = 800 °/s
velocidad Sport = 1500 °/s

Datos iniciales
Giro de las ruedas según diferentes velocidades

1ª Lenta – 400 °/s
Maniobras de precisión y estacionamiento
Velocidad angular: 6,98 rad/s
Velocidad lineal: 0,14 m/s (≈ 14,0 cm/s)
Frecuencia de giro: 1,11 rev/s
Velocidad de rotación: 66,7 RPM
Periodo de una vuelta: 0,90 s

2ª Normal – 800 °/s
Velocidad crucero por defecto
Velocidad angular: 13,96 rad/s
Velocidad lineal: 0,28 m/s (≈ 27,9 cm/s)
Frecuencia de giro: 2,22 rev/s
Velocidad de rotación: 133,3 RPM
Periodo de una vuelta: 0,45 s

3ª Sport – 1500 °/s
Desplazamientos rápidos en tramos rectos
Velocidad angular: 26,18 rad/s
Velocidad lineal: 0,52 m/s (≈ 52,4 cm/s)
Frecuencia de giro: 4,17 rev/s
Velocidad de rotación: 250 RPM
Periodo de una vuelta: 0,24 s

8

Marcha Velocidad (m/s) Aceleración(m/s²)

Lenta 0,14 0,28

Normal 0,28 0,56

Sport 0,52 1,05

FUNDAMENTO DE LOS MOVIMIENTOS
Velocidad y aceleración del robot

1ª Marcha – LENTA (400 °/s)
Maniobras de precisión y estacionamiento
Velocidad
Velocidad angular: 6,98 rad/s
Velocidad lineal: 0,14 m/s (14 cm/s)
Aceleración
Aceleración angular: 13,96 rad/s²
Aceleración lineal: 0,28 m/s²

2ª Marcha – NORMAL (800 °/s)
Velocidad crucero
Velocidad
Velocidad angular: 13,96 rad/s
Velocidad lineal: 0,28 m/s (27,9 cm/s)
Aceleración
Aceleración angular: 27,9 rad/s²
Aceleración lineal: 0,56 m/s²

3ª Marcha – SPORT (1500 °/s)
Desplazamientos rápidos en tramos rectos
Velocidad
Velocidad angular: 26,18 rad/s
Velocidad lineal: 0,52 m/s (52,4 cm/s)
Aceleración
Aceleración angular: 52,4 rad/s²
Aceleración lineal: 1,05 m/s²

8

REQUERIMIENTOS FUNCIONALES9

RF1 Movilidad: El robot debe
poder moverse en todas las
direcciones y detenerse.

RF2 Transporte: Se
transportan objetos en su
contenedor.

RF3 Ejecución de órdenes: El
robot debe ser capaz de
responder las órdenes
ingresadas por el usuario.

RF4 Indicador de estado de
conexión: Se debe indicar en la
GUI el estado de conexión del
robot.

RF5 Velocidad: Se debe poder
modificar la marcha del motor e
indicar esta.

REQUERIMIENTOS NO FUNCIONALES10

RNF1 Disponibilidad: El robot
debe poseer la facultad de
funcionar por a lo menos 1 hora
continua.

RNF2 Robustez: El sistema
debe estar programado para
gestionar de forma efectiva el
90% de los errores y seguir
funcionando.

RNF3 Rendimiento: El sistema
debe ser capaz de cumplir las
ordenes del usuario con una
latencia de no más de 1
segundo.

RNF4 Usabilidad: La GUI debe
ser intuitiva y fácil de usar, para
que el 100% de los usuarios pueda
realizar una tarea designada tras
una breve inducción.

RNF5 Componentes: Los
componentes del robot deben
estar en buena condición y
completamente funcionales
para efectuar acciones con
normalidad el 99.9% del tiempo.

A R Q U I T E C T U R A
La arquitectura está basada en el modelo cliente-servidor.11

 IMPLEMENTACIÓN:
ARQUITECTURA Y FUNDAMENTOS

OBJETIVO FÍSICO
Alcanzar una velocidad mínima de
0,5 m/s (10 metros en 20 segundos)
para simular eficiencia en faena.

MODELO CLIENTE-SERVIDOR
Ejecución remota donde el PC (Cliente) procesa la
lógica pesada y el Hub (Servidor) ejecuta las órdenes
físicas.

COMUNICACIÓN
Transmisión de instrucciones
serializadas vía Bluetooth Low
Energy (BLE).

12

LÓGICA DEL CLIENTE: CONEXIÓN
ASÍNCRONA

El ordenador ejecuta la interfaz en Python.

Multithreading: Se implementó un hilo
secundario (WorkerBluetooth) para
gestionar la conexión sin congelar la
interfaz visual.

Cola de Datos: Uso de asyncio.Queue para
el envío seguro de paquetes.

LÓGICA DEL SERVIDOR: ESCUCHA
 ACTIVA

Inyección de Código: Al conectar, el
sistema transfiere el script
CODIGO_ROBOT a la memoria RAM del
Hub.

Procesamiento en Tiempo Real: El robot
ejecuta un bucle infinito con lectura no
bloqueante (uselect).

Control de Puertos: Gestión exclusiva de
motores A, E (Tracción) y C (Dirección).

INTERFAZ DE CONTROL (GUI)

Desarrollada con librería Tkinter

Panel Superior: Indicador de estado
(Offline/Online) y gestión de conexión segura.

Control Híbrido: Permite operación táctil (botones
en pantalla) o física (teclado WASD).

Feedback Visual: Los botones se iluminan al
recibir acciones para confirmar la orden

GESTIÓN DINÁMICA DE
VELOCIDAD

Implementación de 3 Marchas Virtuales
seleccionables por software:

1 Lenta (400°/s): Precisión.
2 Normal (800°/s): Crucero.
3 Sport (1500°/s): Velocidad.

Al cambiar de marcha (Shift/Ctrl), el sistema
actualiza la variable global y reconfigura los
comandos de movimiento al instante.

OPTIMIZACIÓN DE LATENCIA Y
ESTADO

Problema: El envío constante de teclas
(ej: mantener 'W') satura el Bluetooth.

Solución: Implementación de un
Evaluador de Estado.

Filtro Anti-Spam: El código compara la
orden actual con la anterior
(last_traccion). Si son iguales, no envía
nada. Solo transmite cuando hay un
cambio de estado real.

FUNCIONES AVANZADAS Y
REGISTRO

Accesos Rápidos: Macros que
combinan tracción y dirección en un
solo paquete de datos (ej: "L;B800;"
para curva atrás izquierda).

Consola (Log): Sistema de
monitoreo en tiempo real que
permite visualizar la serialización de
comandos y depurar la conexión.

PRUEBA MINIMA FUNCIONAL (DEMO)13

DESPLIEGUE DEL SISTEMA 14

Repositorio: El código fuente se encuentra alojado y versionado en GitHub para facilitar
la colaboración y mantenimiento.

Clonación del Proyecto:
Comando: git clone git clone https://github.com/Pabloyera/ProyectoFLETE.git

Gestión de Dependencias:
Instalación de librerías: pip install bleak pybricksdev tk

Ejecución:
Inicio del cliente: python Robot.py

PROCEDIMIENTO DE CONEXIÓN
SEGURA

Iniciar: Presionar el botón azul "CONECTAR".

Verificación: Observar el indicador de estado.
Naranja: Buscando dispositivo.
Amarillo: Inyectando código al robot.
Verde (ONLINE): Listo para operar.

Confirmación: Esperar el mensaje en consola
"Conexión lista".

CONTROLES DE OPERACIÓN

Mapa de Teclas:
Movimiento: W (Adelante), S (Atrás), A/D
(Dirección).
Acción: Espacio (Bocina), Q/E (Curvas Rápidas).
Caja de Cambios (Gestión de Potencia):
Shift ⬆️: Subir Marcha (Más velocidad).
Ctrl ⬇️: Bajar Marcha (Más precisión).

Seguridad: Al soltar cualquier tecla, el sistema activa
el frenado automático (Auto-Stop).

CONCLUSIÓN

El proyecto permitió comprender de manera practica cómo la automatización y el control remoto pueden mejorar
significativamente a mejorar la seguridad en entornos laborales. Logrando mejorar la productividad y eficiencia del
transporte de cargas.

Mediante el uso del LEGO Spike Prime y una interfaz desarrollada con Python y Tkinter, logramos simular un sistema
de transporte que minimice la intervención humana en zonas peligrosas, y así prevenir accidentes en situaciones
laborales, ya sea en obras u otro tipo de trabajo relacionado con la construcción.

Como mejoras futuras, se considera la incorporación de sensores adicionales para aumentar el nivel de automatización
y seguridad del sistema, permitiendo la detección de obstáculos y un control más preciso del movimiento. Además, se
plantea mejorar la interfaz gráfica mediante nuevas opciones de configuración y visualización de datos en tiempo real,
con el objetivo de optimizar la supervisión y el control del robot.

15

