Ingenieri(e)

. Computacion e Informatica

UNIVERSIDAD DE TARAPACA
Universidad del Estado

PRESENTACION INFORME
“ROBOT SEPARADOR DE BLOQUES”

Integrantes:

Nicolas Olivares
Sebastian Cahuachia
Victor Breems
Asignatura: Proyecto | Gabriel Delgado
Profesor: Baris Nikolai Klobertanz Quiroz Willy Cruz
Plan de Proyecto — Fase 2 DICIEMBRE 2025

Indice de

CONTENIDOS

O1.
02.
03.

04.

05.

06.

Introduccion
Requerimientos Funcionales
Requerimientos No Funcionales

Arquitectura

Arquitectura de Software
Problemas encontrados y

solucionados

S

07.

08.

09.

10.

11.

Implementacion Servidor
Estado actual del proyecto
FORMATO

Formato, Redacciony
Referencias

CONCLUSION

INTRODUCCION

En esta presentacion presentaremos el informe del
proyecto fase 2 ademas de la correccion de errores
que se presentaron en el informe. A continuacion se
presentara el proceso, junto con su analisis y los
resultados obtenidos.

REQUERIMIENTOS FUNCIONALES

Los requerimientos funcionales describen las acciones y comportamientos que el sistema es capaz de realizar:

RF-01 - Deteccion de color
El sistema detecta automaticamente el color de una pieza LEGO utilizando el sensor de color del kit LEGO SPIKE
PRIME.

RF-02 - Clasificacion por color
El sistema clasifica las piezas detectadas en compartimentos fisicos separados segun su color:
amarillo, azul, verde, rojo y morado.

RF-03 - Desplazamiento controlado
El robot se desplaza de forma controlada para posicionarse correctamente frente al compartimento
correspondiente al color detectado.

RF-04 - Control mediante interfaz grafica
El sistema permite iniciar, mover, pausar y reanudar el proceso de clasificacion mediante una interfaz grafica de
usuario (GUI).

RF-05 - Operacion autonoma 1
Una vez iniciado el proceso, el robot opera de forma auténoma, sin intervencion del usuario durante el ciclo de ~
clasificacion.

REQUERIMIENTOS NO
FUNCIONALES

Se redefinieron los RNF como atributos medibles y verificables:

RNF-01 (Disponibilidad):
El robot debe operar de forma continua durante al menos 30 minutos
sin fallas.

RNF-02 (Robustez):
El sistema continua operando ante lecturas erroneas ocasionales del
sensor.

RNF-03 (Rendimiento):
Clasificacion de una pieza en un tiempo maximo de 5 segundos.

RNF-04 (Usabilidad):
La interfaz permite el uso sin capacitacion previa.

ARQUITECTURA

Cliente

Aplicacion Python con interfaz grafica (GUI).

Servidor

Hub LEGO SPIKE PRIME que ejecuta instrucciones.
Comunicacion

Bluetooth Low Energy (BLE) mediante libreria Pybricksdev.
Generacion de archivos temporales enviados al hub.

Servidor fisico: el HUB LEGO SPIKE PRIME (hardware) que ejecuta
software interno (firmware/runtime) y controla motoresy
sensores.

- Es “el aparato” que presta el servicio fisico (mover, leer
sensor).
Servidor logico: el software que representa/controla al hub desde
el lado del PC (por ejemplo pybricksdev + pybricks como capa que
construye/manda instrucciones y gestiona la comunicacion).

- Puede correr en el computador del cliente, pero cumple un
rol de “servidor” porque orquesta la ejecucion en el hub.

ARQUITECTURA DE SOFTWARE

En el presente proyecto se utiliza una arquitectura de tipo cliente-servidor.

e Cliente: Corresponde al hardware del robot. Su responsabilidad es ejecutar las
instrucciones a bajo nivel a través de su firmware para activar el motor y sensor.

e Servidor: Esta constituida con la libreria de Pybricksdev que genera el archivos
temporales. Su funcion es mandar esos archivos temporales a la Hub de LEGO

SPIKE PRIME.

e Comunicacion: La comunicacion se realiza mediante una conexion con

bluetooth con la libreria de Pybricksdev que esta encargado de enviar comando a
la Hub de LEGO SPIKE PRIME

PROBLEMAS ENCONTRADOS Y
SOLUCIONADOS

1. Problema: Dificultades para conectar la PC y el Hub de LEGO SPIKE PRIME.

Solucion: Se implementa la libreria pybricksdev en Python. Esta libreria optimiza la
comunicacion via BLE (Bluetooth Low Energy), permitiendo la ejecucion de scripts
directamente en el Hub de LEGO SPIKE PRIME, eliminando el retraso que generaba el
firmware original.

2. Problema: El sensor arrojaba lecturas erroneas debido a las condiciones de luz
ambiental, confundiendo colores similares.

Solucion: Se utilizo la clase ColorSensor de la libreria Pybricks, la cual permite
acceder a los valores crudos de reflexion y HSV (Matiz, Saturacion). Esto permitio
calibrar el sensor por software para filtrar el ruido luminico, en lugar de usar la
deteccion de color basica predeterminada.

IMPLEMENTACION SERVIDOR

. El cliente genera dinamicamente programas Pybricks.
. Los archivos .py se envian temporalmente al hub.
. El hub ejecuta las instrucciones y luego se eliminan los archivos.

e Se aclarod el rol del servidor como ejecutor de comandos y controlador de motores y sensores.

Diseno Iinicial de la interfaz
grafica de usuario (GUI)

/ Control del Robot — —
Separador de Bloques

[S;adj

Movimiento .(A yC)

IIzquierda I IDerecha |
Empujar bloque
ITirar bloque I

Conexion

I Conectar | l Desconectar |

Fundamentos de los

movimientos

Para justificar el movimiento de giro del robot, se
considera un giro de 90°

realizado en un tiempo
aproximado de 1,5 segundos.

La velocidad angular se calcula mediante la formula:

w =06 /1t
Donde:

O = 90° = m/2 rad
t = 1,5 s

w = (n/2) / 1,5 = 1,05 rad/s

Este valor permite un giro controlado y preciso, evitando
errores en la alineacion del robot frente a los

compartimentos.

Generacion dinamica del
programa que ejecuta el robot
(create_program)

EL cliente genera automaticamente un programa en Pybricks
segun el comando que el usuario seleccione en la interfaz

(por ejemplo: izquierda, derecha, empujar o tirar). Para ello,
la funcidén create_program(drive_cmd, claw_cmd) convierte
cada comando en una instruccion de movimiento para los

motores mediante run(...). Luego, el programa creado
configura el hub (PrimeHub), define los motores segun los
puertos utilizados y ejecuta la accion solicitada. Finalmente,
se incorpora un tiempo de espera breve vy se detienen los

motores, con el fin de mantener un movimiento controlado y

evitar que el robot continue funcionando sin supervision.

Generacion dinamica del
programa que ejecuta el robot
(create_program)

def create_program(drive_cmd: str, claw_cmd: str) -> str:
drive_commands = {

'empujar’: ")
'‘tirar": "motorF.run(-500)

drive code = drive_commands.get(drive_cmd, "motorC.stop(); motorF.stop()")
program = f""

from pybricks.hubs import PrimeHub

from pybricks.pupdevices import Motor

from pybricks.parameters import Port

from pybricks.tools import wait

hub = PrimeHub()

motorC = Motor(Port.C)
motorF = Motor(Port.F)

{drive_code}
wait(300)

motorF.stop()

return program

Gestion de conexion y envio de
comandos por Bluetooth
(BLEWorker._runner)

La conexion Bluetooth vy el envio de comandos al robot se
gestionan mediante un componente asincrono que funciona
como “worker”. En el método _runner() se busca el hub
disponible utilizando find_device(), luego se crea lLla conexiodn
con PybricksHubBLE y se establece mediante connect(). Una
vez conectado, el sistema se mantiene en ejecucion
esperando nuevas instrucciones a traves de una cola
(asyncio.Queue). Cada comando recibido se procesa
enviandolo al robot mediante la funciédn
execute_command(...), y el estado del proceso (conexién,
ejecucion o errores) se informa mediante mensajes
registrados en el panel de estado.

Gestion de conexion y envio de
comandos por Bluetooth
(BLEWorker._runner)

async def runner(self):
try:
self log("Buscando hub Bluetooth...")
device = await find_device()
if not device:

self.log("No se encontro hub.")
return

self. hub = PybricksHubBLE(device)

await self hub.connect()

self.log("Conectado al hub. Listo para mover.")

self running.se

while True:
drive_cmd = await self.queune.get()
await execute command(self.hub, drive emd, self.avanzar activo, self.log)

except asyncio.Cancelled Error:

except Exception as e:
self.log(f"Error en worker
finally:
if self hub:
try:
await self hub.disconnect()

self running.clear()

Interfaz grafica: controles de
movimiento (botones)

frame move = ttk.LabelFrame(root, text="Movimiento (A y C)")
frame move.pack(fill="both", padx=10, pady=10)

ttk.Button(frame move, text="(+] Izquierda", command=lambda: worker.send_command("izquierda")).grid(row=1, column=0, pady=>5)

ttk.Button(frame move, text="(=] Derecha", command=lambda: worker.send_command("derecha")).grid(row=1, column=2, pady=5)
ttk.Button(frame_move, text="Empujar bloque", command=lambda: worker.send_command("empujar")).grid(row=2, column=1, pady=>5)
ttk.Button(frame move, text="Tirar bloque", command=lambda: worker.send command("tirar")).grid(row=3, column=1, pady=>5)

ESTADO ACTUAL DEL PROYECTO

Actualmente, el robot cumple con la funcion principal de identificar y clasificar bloques LEGO
por color. La interfaz grafica (GUI) permite el control manual del robot y la supervision del
estado de conexidon en tiempo real, asegurando una interaccion fluida entre el usuario y el
sistema.

La deteccion de color funciona de correctamente, presentando algunas variaciones bajo
diferentes condiciones de luz, por lo que sigue en proceso de calibracion. Las funcionalidades
autonomas estan parcialmente implementadas, permitiendo ciclos basicos de clasificacion
automatica, pero requieren optimizacion para aumentar la estabilidad y reducir tiempos de

ejecucion. g — — Resultado

RF-01 | Posicion inicial Completo El robot vuelve a la posicion inicial al
momento de tirar un blogue.

RF-02 | Movimiento del robot Completo | El robot se mueve de manera
eficiente a las posicion de cada
cuadrado para separar los blogues
de color.(amarillo, azul, verde, rojoy

moradao).
RF-03 [Control via Interfaz Completo | La conexion Bluetooth permite iniciar,
(GUI) pausar y mover el robot
manualmente.
RF-04 | Deteccion de color Funcional | Aun tenemos problemas pero puede

detectar algunos colores.

FORMATO

o Se corrigio la portada utilizando el formato
oficial, ajustando el titulo y el espaciado de los
nombres. Ademas, se optimizo la distribucion del
contenido, eliminando separaciones innecesarias
entre titulos y texto, y reduciendo espacios
excesivos en tablas y secciones para mejorar la
presentacion general del documento.

Formato, Redaccion y Referencias

e Portada institucional correcta.
e Orden de titulos y tablas.

e Referencias citadas y coherentes con el contenido
técnico.

CONCLUSION

Como conclusion, aprendimos a integrar hardware y
software en una arquitectura cliente-servidor,
también nos dimos cuenta que durante el desarrollo
del informe cometimos algunos errores que pasamos
por alto, principalmente errores de espacios
“exagerados”, ser un poco superficiales en algunas
explicaciones, no haber distinguido bien entre
servidor fisico y logico.

MUCHAS

