
Proyecto I

UNIVERSIDAD DE TARAPACÁ
[image:]

[image:][image:]
[image:]
 FACULTAD DE INGENIERÍA

[image:]
 DEPARTAMENTO DE INGENIERÍA
	 EN COMPUTACIÓN E INFORMÁTICA

Plan de proyecto: Fase 2
Brazo Robótico de Lego

Autores: Eduardo Suaña
Dylan Calderon
Matias Agriano
 Benjamin Sucso

Asignatura: Proyecto I
Profesor: Baris Nikolai Klobertanz Quiroz

DICIEMBRE - 2025
ARICA - CHILE
HISTORIAL
[bookmark: _r5wm15rw8xfk]Tabla 1
Asignación de roles
	Fecha
	Versión
	Descripción
	Autor(es)

	09/10/2025
	1.0
	Creación del documento base del proyecto.
	Matías Agriano

	09/10/2025
	1.1
	Agregado de introducción, objetivos y especificación del problema.
Inclusión de roles del equipo y métodos de comunicación.
	Matías Agriano
Eduardo Suaña
Benjamín Sucso

	10/10/2025
	1.2
	Desarrollo de la planificación de actividades y Carta Gantt.
	Dylan Calderon

	11/10/2025
	1.3
	Incorporación de la gestión de riesgos y planificación de recursos.
	Dylan Calderon
Benjamín Sucso

	13/10/2025
	1.4
	Redacción del apartado de hardware y software utilizados.
	Eduardo Suaña

	16/10/2025
	1.5
	Agregado de costos estimados.
	Benjamín Sucso

	17/10/2025
	1.6
	Redacción de la conclusión y revisión general del informe.
	Dylan Calderon
Matías Agriano
Benjamin Sucso

	17/10/2025
	1.7
	Correcciones en referencias, precios y riesgos
	Eduardo Suaña
Matias Agriano
Benjamin Sucso

	24/11/2025
	1.8
	Corrección completa del informe inicial.
	Todos

	11/12/25 -
16/12/2025
	2.0
	Redacción del informe 2.
	Todos

	24/12/25 -
25/12/25
	2.1
	Corrección del informe 2
	Todos

Índice
1. Planteamiento del problema y objetivo	4
1.1. Problema	4
1.2. Objetivos	4
1.2.1. Objetivo general	4
1.2.2. Objetivo específico	4
2. Organización personal	5
2.1. Descripción de los roles	5
2.2. Asignación de roles	5
2.3. Canales de comunicación	6
3. Planificación del proyecto	7
3.1. Actividades definidas	7
3.2. Carta gantt	8
3.3. Gestión de riesgos	8
4. Identificación de los recursos y costos asociados	9
4.1. Hardware	9
4.2. Software	10
4.3. Recursos humanos	11
4.4. Costo total de recursos	12
5. Análisis y diseño	12
5.1 Especificación de requerimientos	12
5.1.1. Requerimientos funcionales	12
5.1.2. Requerimientos no funcionales	13
5.2. Arquitectura de software	13
5.3. Diseño inicial de la interfaz gráfica de usuario (GUI)	15
6. Implementación	17
6.1. Fundamentos de los movimientos	17
6.2. Descripción del sistema	20
6.2.1 Cliente	20
6.2.2. Servidor	23
6.2.3.Interfaz gráfica de usuario (GUI)	25
7. Resultados	26
7.1 Estado actual del proyecto	26
7.2. Problemas encontrados y solucionados	27
8. Conclusiones	28
9. Referencias	29
[bookmark: _ihg7fqszoou1]

Índice de tablas

Tabla 1	1
Tabla 2	5
Tabla 3	5
Tabla 4	7
Tabla 5	9
Tabla 6	10
Tabla 7	11
Tabla 8	11
Tabla 9	12
Tabla 10	15
Tabla 11	19
Tabla 12	22
Tabla 13	23
Tabla 14	26
Tabla 15	26
Tabla 16	27

Índice de figuras

Figura 1	8
Figura 2	14
Figura 3	17
Figura 4	20
Figura 5	21
Figura 6	22
Figura 7	24
Figura 8	25

	

1. [bookmark: _3nbs4l36gavg] Planteamiento del problema y objetivo
[bookmark: _eddjlvl1qog]1.1. Problema
El problema identificado se relaciona con la necesidad de reducir la exposición de los trabajadores a condiciones peligrosas durante las jornadas mineras subterráneas.

· En los procesos de carga y manipulación de material, los operarios enfrentan riesgos físicos y ambientales que pueden afectar su seguridad y salud.

· Se requiere una herramienta robótica que incorpore tecnologías como la teleoperación, la automatización y la robótica para mejorar la productividad, reducir costos, optimizar procesos y, principalmente, minimizar los riesgos humanos asociados a las labores mineras.
[bookmark: _su6zugd0h1go]1.2. Objetivos
[bookmark: _tv7enbs4mk7y]	1.2.1. Objetivo general
Diseñar, construir y programar un brazo robótico con LEGO Spike Prime, controlado a distancia mediante una interfaz de teleoperación, para manipular de forma segura y eficiente material fragmentado en un entorno minero simulado, reduciendo la exposición de los trabajadores a riesgos operacionales.
[bookmark: _g5kfcq522sf3]1.2.2. Objetivo específico
1. Seleccionar y construir el diseño del robot con las piezas del Set de Lego Spike Prime, para tener una base resistente y simétrica.

2. Investigar y hacer pruebas para el desarrollo del software del robot, con el fin de crear un software final estable y eficiente para que el robot cumpla sus tareas.

3. Analizar detalladamente el funcionamiento del Set de Lego Spike Prime, para comprender las capacidades y limitaciones de sus componentes.

4. Programar la interfaz del control remoto, para controlar las funciones del robot mediante conexión remota.

5. Diseñar una interfaz que represente un control remoto para el manejo del robot
[bookmark: _vvsnsixbtp6]2. Organización personal
[bookmark: _vt3a4nob66hx]	2.1. Descripción de los roles

Para garantizar un trabajo eficiente y colaborativo, el equipo identificó las actividades principales (diseño y construcción, programación, documentación y gestión) y asignó roles específicos aprovechando las fortalezas individuales.

[bookmark: _b5d5sjckktcf]Tabla 2
Definición de roles
	Rol
	Responsabilidades Clave

	Jefe de proyecto
	Coordina el equipo, establece metas y plazos. Asegura que los miembros cumplan sus tareas y comunica los avances.

	Constructor
	Construye el robot o estructura con las piezas de Lego Spike. Asegura que el diseño sea funcional y estable, proponiendo modificaciones para mejorarlo

	Diseñador
	Crea y desarrolla el diseño visual y estructural del robot, priorizando la funcionalidad y la estética. Planifica la distribución de piezas para optimizar el equilibrio y el rendimiento.

	Programador
	Programa el comportamiento del robot usando el Software de LEGO Spike (MicroPython). Depura y ajusta el código para lograr la funcionalidad deseada.

	Documentador
	Documenta todo el proceso (pasos, problemas, soluciones y resultados). Prepara informes, la carta Gantt, la bitácora del proyecto y presentaciones.

[bookmark: _73vgvof6u44j]2.2. Asignación de roles

La siguiente tabla detalla el integrante asignado a cada rol dentro del equipo:

[bookmark: _39v2gviikj3l]Tabla 3
Asignación de roles
	Rol
	Integrante

	Jefe de proyecto
	Dylan Calderon

	Programador
	Benjamín Sucso

	Diseñador
	Matias Agriano

	Constructor
	Dylan Calderon

	Documentador
	Eduardo Suaña

[bookmark: _d3sh999qiwyb]	2.3. Canales de comunicación

	El medio de comunicación principal utilizado por el equipo es Whatsapp.
	
· Es una herramienta para la comunicación rápida y constante entre los integrantes del equipo.

· A través de este medio se comparten recordatorios, fotos del proceso, dudas, archivos y actualizaciones del trabajo.

· Su uso permite mantenerse conectado en todo momento, incluso fuera del horario de clases.
[bookmark: _8c1r2fjlnjtj]
[bookmark: _nt5bo0430vzq]
[bookmark: _o7mfyqgaogml]
[bookmark: _wir8ho5e3a9q]
[bookmark: _aesug9gq1784]

[bookmark: _z71l4kok840x]

[bookmark: _t7dssqibdx3d]3. Planificación del proyecto
Las siguientes actividades fueron registradas en el proyecto, detallando los objetivos específicos a los que contribuyen y sus responsables:
[bookmark: _1kncxy5djitz]	3.1. Actividades definidas
Las siguientes actividades fueron registradas para el proyecto, detallando el nombre de la actividad y el o los responsables de llevarla a cabo:
[bookmark: _1ulrqkjuu0k6]Tabla 4
Definición de actividades y responsables de acuerdo a los roles asignados
	Nombre de la actividad
	Responsables

	Formar el equipo de trabajo
	Todos

	Analizar la problemática
	Todos

	Elaborar la bitácoras semanales
	Eduardo Suaña

	Redactar la Carta Gantt
	Eduardo Suaña
Dylan Calderon

	Elegir diseño del robot
	Matias Agriano

	Probar los elementos del set
	Dylan Calderon

	Construir estructura base
	Dylan Calderon

	Construir brazo del robot
	Dylan Calderon

	Construir garra del robot
	Dylan Calderon

	Probar giro de 360°
	Benjamin Sucso

	Probar movimiento vertical del brazo robótico
	Benjamin Sucso

	Probar el agarre y liberación de la garra
	Benjamin Sucso

	Redactar el Informe 1
	Eduardo Suaña
Dylan Calderon

	Preparar presentación oral 1
	Todos

	Investigar el software y los métodos de programación
	Benjamin Sucso

	Programar Interfaz gráfica
	Benjamin Sucso
Matias Agriano

	Redactar el informe 2
	Eduardo Suaña
Dylan Calderon

	Preparar presentación oral 2
	Todos

	Demostrar el producto final
	Todos

[bookmark: _m49o2fi0lz1i]3.2. Carta gantt
Para organizar de manera eficiente las actividades del proyecto, se elaboró una Carta Gantt. Esta herramienta permite visualizar la secuencia de tareas y su distribución en el tiempo. La Carta Gantt facilita la planificación general del trabajo, ya que muestra cuándo debe iniciarse cada actividad, cuánto durará y cómo se relaciona con las demás etapas del proyecto. Gracias a esta representación temporal, el equipo puede observar el progreso de manera gráfica.

[bookmark: _t3gtuwl50deo]Figura 1
Carta gantt
[image:]

[bookmark: _xwjnwur960s1]	3.3. Gestión de riesgos

Se identificaron riesgos que podrían afectar el desarrollo del trabajo. Estos fueron categorizados según su nivel de impacto (Bajo, Medio y Alto) para determinar las medidas preventivas o de solución.

· Bajo: El riesgo puede generar retrasos o dificultades menores que no afectan significativamente el avance del proyecto; su solución requiere poca intervención.

· Medio: El riesgo puede afectar parcialmente el rendimiento del equipo o el cumplimiento del cronograma, requiriendo reestructuración moderada para ser solucionado.

· Alto: El riesgo puede comprometer gravemente la continuidad del proyecto, retrasar de forma considerable su desarrollo o impedir el cumplimiento de los objetivos si no se atiende oportunamente.

[bookmark: _z8ia7t2cx8ik]Tabla 5
Riesgos identificados
	Riesgo identificado
	Nivel de impacto
	Medida preventiva

	Abandono de integrante
	Alto
	Redefinir roles, ofrecer ayuda mutua para tratar de prevenir.

	Mal funcionamiento o desempeño del robot
	Alto
	Volver a la fase de diseño teniendo en cuenta las complicaciones.

	Cambios de actividades en horarios destinados al proyecto
	Bajo
	Acordar reuniones y horas extraordinarias.

	Limitación de piezas del Set de LEGO
	Bajo
	Planificar bien el diseño antes de construir y adaptar el modelo según las piezas disponibles o solicitar piezas adicionales.

[bookmark: _d7l1jbbip4i7]4. Identificación de los recursos y costos asociados

Para asegurar la correcta ejecución del proyecto, se identificaron y organizaron los recursos, clasificados en hardware, software y recursos humanos.
[bookmark: _emesrwui7chb]4.1. Hardware
	
Se utilizó el kit LEGO Spike Prime para la construcción y control del sistema robótico. Los principales elementos de hardware empleados fueron:

· Hub LEGO Spike Prime: Es el cerebro del robot, contiene un microcontrolador que ejecuta el código programado y coordina las acciones de los motores y sensores.

· Motores grandes y medianos del hub: Se utilizaron para generar el movimiento del brazo y de la garra.

· Cables de conexión del hub: Permiten la comunicación entre el Hub y los diferentes motores y sensores.

· Estructura de piezas LEGO: Conformada por vigas, ejes, conectores y engranajes.

· Computador personal (PC): Utilizado para programar el robot, cargar el código en el Hub y realizar las pruebas de funcionamiento.

· Expansión del Set de LEGO Spike Prime.

[bookmark: _vcbn0fmlczgn]Tabla 6
Costos del hardware
	Hardware
	Cantidad
	Precio
	Fuente de la cotización

	Galaxy Tab S9 FE
	1
	$579.991 CLP [1]
	Falabella (s. f.)

	Lenovo IdeaPad 5 15ITL05
	1
	$799.990 CLP [2]
	SmartDeal.cl (2023)

	Lego Education SPIKE PRIME Set
	1
	$555.000 CLP [3]
	The LEGO Group (s. f.)

	Lenovo V14 G2 ALC
	2
	$1.598.000 CLP [4]
	Opcstore (s. f.)

	Lego Set de expansión (45680)
	1
	$174.000 CLP [5]
	The LEGO Group (s. f.)

	Total Hardware
	-
	$3.706.981 CLP
	-

	
[bookmark: _dbefqcp4mjh5]	4.2. Software

Se optó por utilizar software gratuito para la programación, documentación y comunicación.

· Entorno de programación LEGO Spike App: Plataforma oficial de LEGO Spike que permite crear, cargar y ejecutar programas en el Hub del robot, usado para las pruebas iniciales de los elementos del set LEGO.

· MicroPython: Lenguaje de programación utilizado para controlar los motores, sensores y la lógica de movimiento.

· Git y github: Para llevar un control de versiones, facilitar la colaboración y mantener un historial de cambios.

· Pybricks: Firmware instalado en el hub.

· Visual Studio Code: Editor con varias extensiones para apoyar la programación en MicroPython.

· WhatsApp: Aplicación para comunicación no presencial.

· Costo de Software Total: $0 CLP.
[bookmark: _997rjpclc542]

[bookmark: _y4es7cofxrvi]Tabla 7
Costo de Hardware
	Software
	Precio

	LEGO Spike App
	$0 CLP

	MicroPython
	$0 CLP

	Git y github
	$0 CLP

	Pybricks
	$0 CLP

	Visual Studio Code
	$0 CLP

	WhatsApp
	$0 CLP

	Total Software
	$0 CLP

[bookmark: _jnsh0tigl6rd]	4.3. Recursos humanos

Los costos de personal son una estimación basada en el valor hora de mercado para perfiles de ingeniería o técnicos especializados. La contabilización de horas de trabajo se registró desde el 26 de septiembre hasta el 30 de diciembre. Las horas extras fueron valoradas al mismo costo que la hora de trabajo regular.

[bookmark: _ai7ve12lkhy5]
[bookmark: _1235snwqgq1t]Tabla 8
Sueldo del personal
	Rol del personal
	Horas regulares
	Horas extras
	Sueldo / hora

	Jefe de proyecto
	58
	10
	$28.000 CLP

	Programador [6]
	58
	10
	$24.000 CLP

	Diseñador
	58
	10
	$23.000 CLP

	Ensamblador
	58
	10
	$24.000 CLP

	Documentador
	58
	10
	$23.000 CLP

	Total personal
	-
	-
	$8.296.000 CLP

[bookmark: _2glfjnn1yocg]	4.4. Costo total de recursos
El costo total del proyecto se obtiene sumando el costo de hardware, software y personal.

[bookmark: _e34fx6cc8rgf]Tabla 9
Presupuesto total del proyecto
	Costo total
	Precio

	Hardware
	$3.706.981 CLP

	Software
	$0 CLP

	Personal
	$8.296.000 CLP

	Total general
	$12.002.981 CLP

[bookmark: _o68wcvaatphq]5. Análisis y diseño	
[bookmark: _vxkuagtwkenf]5.1 Especificación de requerimientos
Para el desarrollo del sistema, se identificaron los roles de los stakeholders principales:

Cliente: Compañía minera que requiere la automatización para reducir riesgos (quien financia/solicita).

Usuario: Operador de maquinaria pesada que controlará el brazo robótico a distancia (quien usa el sistema).
[bookmark: _wpu5k2g5p9b]		5.1.1. Requerimientos funcionales
El sistema debe cumplir con las siguientes funciones operativas:

· RF1 Movimiento rotativo: El brazo robótico debe ser capaz de rotar su base en 360 grados.

· RF2 Movimiento flexible: El brazo robótico debe poder articular el codo para alcanzar un objeto.

· RF3 Manipulación de Carga: La garra debe abrirse y cerrarse para sujetar firmemente un bloque de LEGO estándar sin dejarlo caer durante el traslado.

· RF4 Teleoperación: El sistema debe permitir el control manual de todos los motores a través de una interfaz gráfica en el ordenador.

· RF5 Parada de Emergencia: La interfaz debe contar con una función para detener todos los motores inmediatamente en caso de una situación de riesgo.

[bookmark: _6v0bzxlqesw]		5.1.2. Requerimientos no funcionales
El sistema debe cumplir con los siguientes atributos de calidad, verificables mediante métricas específicas:

· Usabilidad: La interfaz gráfica debe permitir que un usuario sin experiencia previa logre conectar el robot y realizar un movimiento básico en menos de 30 segundos. Los controles deben estar etiquetados claramente en español.

· Rendimiento (Latencia): El tiempo de respuesta entre la pulsación de un botón en la interfaz (Cliente) y la reacción del motor del robot (Servidor) debe ser inferior a 200 milisegundos para garantizar una teleoperación fluida.

· Seguridad (Failsafe): En caso de pérdida de conexión Bluetooth, el robot debe detener todos sus motores automáticamente en un lapso no mayor a 1 segundo para evitar daños.

· Disponibilidad: El sistema debe ser capaz de mantener la conexión activa y operativa durante al menos 10 minutos continuos, tiempo estimado para una demostración estándar.

[bookmark: _ai05cz9xlvqe]	5.2. Arquitectura de software
El sistema se basa en una arquitectura Cliente-Servidor distribuida físicamente, utilizando comunicación inalámbrica asíncrona mediante el protocolo Bluetooth Low Energy (BLE). Esta arquitectura desacopla la lógica de control de usuario (interfaz) de la lógica de actuación física (motores), tal como se describe en la literatura sobre sistemas distribuidos (Garcia, 2025).
A continuación se detallan los componentes y su interacción:
· Cliente (PC / Ordenador): Es el componente de alto nivel ejecutado en un entorno de escritorio (Windows/Linux).
Hardware: Laptop o PC con adaptador Bluetooth.
Software: Script en Python que ejecuta la interfaz gráfica (Tkinter) y la librería pybricksdev o bleak.
Responsabilidad: Captura los eventos del usuario (teclado/ratón), codifica las instrucciones en caracteres simples (bytes) y los transmite vía BLE.
· Canal de Comunicación (Middleware): Enlace inalámbrico BLE. Se utiliza un servicio UART nórdico estándar para la transmisión de datos serie bidireccional con baja latencia.
· Servidor (Hub LEGO Spike): Es el componente embebido que interactúa con el mundo físico.
Hardware: Hub LEGO Spike Prime (Microcontrolador STM32).
Software: Firmware Pybricks ejecutando un script de MicroPython (main.py).
Responsabilidad: Ejecuta un bucle infinito (while True) escuchando el puerto serie (stdin). Al recibir un byte, lo decodifica y acciona los puertos de los motores (A, B, C, D) mediante controladores PID internos.

[bookmark: _ojvadwufwmt6]Figura 2
Diagrama arquitectura cliente-servidor del proyecto
[image:]

[bookmark: _bev9ar2fctst]5.3. Diseño inicial de la interfaz gráfica de usuario (GUI)

En la fase de análisis y diseño, se elaboró un boceto o wireframe de baja finalidad de la interfaz gráfica de usuario (GUI). Este diseño preliminar sirve como guía estructural para el componente cliente del sistema, que será utilizado por operador para la teleoperación remota del brazo robótico.

El diseño se centra en la estructura, la disposición lógica y los requerimientos funcionales y no funcionales identificados (especialmente usabilidad y rendimiento), sin incluir detalles de color o estilo visual.

Objetivo del diseño inicial:

El wireframe se diseñó para:

· Asignar un bloque de control dedicado a cada uno de los cuatro motores principales del robot, asegurando un control preciso sobre los ejes de movimiento rotativo(base, brazo, pinza y elevador).

· Incluir botones de conectar y desconectar para gestionar de forma explícita la disponibilidad y la comunicación inicial entre la interfaz y el Hub del robot.

· Proporcionar un control direccional claro (horario / anti horario) para cada motor, permitiendo al operador realizar la teleoperación y manipular el robot con movimiento de avance y retroceso en cada eje.

	Componente del wireframe
	
El boceto de baja finalidad estructura la interfaz en tres componentes lógicos principales, diseñados para cumplir con los requerimientos funcionales del sistema (teleoperación y movimiento).

[bookmark: _sg10yfn3j1au]
[bookmark: _3v1d3wv23hm0]

[bookmark: _si6amoek3seg]

[bookmark: _2oynwz8146d0]Tabla 10
Desglose de Componentes y función del wireframe de la GUI
	Componente
	Función del diseño
	Requerimiento asociado

	Controles de conexión
	Gestionan el estado de la comunicación con el Hub del robot, controlando la disponibilidad del sistema.
	Disponibilidad

	Paneles de control de ejes
	Bloques dedicados a cada motor, con botones de horario y antihorario para la teleoperación y el movimiento bidireccional.
	Teleoperación y movimiento

	Mecanismo de control direccional
	La disposición de dos botones por motor permite un control inmediato de la acción en cada eje, lo que es clave para la usabilidad y el rendimiento.
	Usabilidad y rendimiento

[bookmark: _qm1rl5l2n0y]
[bookmark: _2u8hai6m41km]Figura 3
Wireframe
[image:]

[bookmark: _lzljx88i80wi]6. Implementación

Esta sección presenta los resultados obtenidos hasta el momento en el desarrollo del proyecto. Incluye la justificación de la configuración del robot basada en principios físicos fundamentales, una descripción de los componentes clave del sistema implementado (cliente y servidor), y una vista de la Interfaz Gráfica de Usuario (GUI) desarrollada, explicando sus elementos y funciones.
[bookmark: _dxcll5solyj3]	6.1. Fundamentos de los movimientos

Los movimientos del Brazo Robótico de Lego se justifican mediante los principios fundamentales de la física para asegurar que el sistema cumpla con su objetivo de manipular material pesado.

Dada la naturaleza del proyecto, que involucra levantar y mover objetos con un brazo robótico, un principio físico clave a aplicar es el cálculo del trabajo mecánico necesario para elevar la carga. Esto es crucial para determinar la potencia y configuración de los motores requeridos en el brazo y la garra.

El trabajo mecánico (W) realizado por una fuerza (F) para levantar un objeto es igual al cambio en su energía potencial gravitatoria, asumiendo una velocidad constante o una aceleración nula.

	
			 W = F • d • cos(θ)

· W es el trabajo mecánico (en Joules, J)

· F es la fuerza aplicada, que debe ser al menos igual al peso del objeto (en Newtons, N)

· θ es el ángulo entre la fuerza y el desplazamiento. En este caso, al levantar verticalmente, θ = 0 grados, por lo que cos(θ) = 1.

· d es la distancia vertical a la que se desplaza al objeto (en metros, m)

 P = m • g

· P Es la fuerza con la que la Tierra atrae al bloque de Lego hacia su centro(en Newtons, N).

· m es la masa que contiene el bloque de Lego (en kilogramos, kg).

· g es la aceleración que experimenta cualquier objeto en la superficie de la Tierra, la gravedad (en metros partidos por segundo al cuadrado, m/s²).

	Por lo tanto, el trabajo para levantar un objeto de masa (m) a una altura (h) es:

					W = m • g • h
	Para el Brazo Robótico de Lego:

1. Identificación de la masa (m): Se debe medir la masa (en kg) del bloque de Lego más pesado que el robot debe manipular.

2. Identificación de la altura (h): Se debe determinar la altura máxima (en m) a la que el brazo debe levantar el bloque para cumplir con la tarea de manipulación en el entorno minero simulado.

3. Cálculo: Sustituyendo la masa (m) y la altura (h) en la fórmula junto con la aceleración de la gravedad (g ≈ 9,8m/s²), se obtiene el trabajo mínimo requerido (en J).
	
	Cálculo con Valores Reales del Proyecto

Se tomaron las mediciones del bloque de material más pesado y la altura máxima de levantamiento requerida para la simulación del entorno minero. El cálculo se aplica al motor principal de levantamiento

[bookmark: _xqbgz8vr60cb]Tabla 11
Parámetros físicos
	Parámetro
	Símbolo
	Valor medido
	Unidad

	Masa del objeto
	m
	0,15
	Kilogramos(Kg)

	Aceleración de gravedad
	g
	9,8
	Metros partidos en segundos al cuadrado (m/s²)

	Altura de levantamiento
	h
	0,20
	Metros (m)

	
	Cálculo del peso (P)		
	
Esta fuerza es el peso que el motor B debe contrarrestar para iniciar y mantener la elevación.

				 P = m • g
				 P = 0,15 Kg • 9,8 m/s²
					 P = 1,47 N

El motor B debe generar un torque equivalente a una fuerza de 1,47 Newtons en el punto de levantamiento para soportar la carga.

Cálculo del trabajo Mecánico (W)

Este es el trabajo total que el motor B debe realizar para elevar la carga a la altura de 20 cm.

			
				 W = P • h
		 	 W = 1,47 N • 0,20 m
				 W = 0.294 J

1El Motor B requiere un Trabajo de 0,294 Joules para completar la tarea de elevación.

Este cálculo del trabajo permite justificar la selección y el uso del Hub LEGO Spike Prime y de los motores grandes y medianos, asegurando que estos componentes tengan la potencia necesaria para realizar la acción de levantamiento y movimiento de la carga.

[bookmark: _vznd8ba0qzfy]	6.2. Descripción del sistema
La arquitectura del sistema implementado es de tipo Cliente-Servidor y utiliza la comunicación inalámbrica Bluetooth Low Energy (BLE) para la teleoperación del robot. La implementación se concentra en un único script de Python que gestiona la Interfaz de Usuario, la Conexión y el Código del Servidor, el cual se inyecta dinámicamente en el Hub LEGO Spike Prime.

El código del proyecto se encuentra alojado en el repositorio de GitHub en el siguiente enlace: https://github.com/M47355/Proyecto-1.git

El repositorio contiene 4 componentes los cuales son: Servidor, interfaz, Cliente y controlador.
[bookmark: _3jz6fty8cg0b]		6.2.1 Cliente
El componente Cliente es el script principal de Python, ejecuta los demás componentes (utilizando Tkinter para la GUI y la librería pybricksdev para la conexión asíncrona) para formar la aplicación en el PC del operador.
[bookmark: _n4h6ytb5a8xj]Figura 4
		Código del cliente (componente Cliente)
[image:]

El componente controlador recibe las entradas realizadas por el usuario y las comunica hacia el componente Servidor, esto mediante el componente interfaz
[bookmark: _7iqcrv9b745h]Figura 5
Fragmento código del cliente (componente controlador)[image:]

URL del repositorio de GitHub: https://github.com/M47355/Proyecto-1.git

[bookmark: _mi9r9bvasl4f]Tabla 12
Componentes importantes del componente controlador
	Componente
	Explicación
	Función dentro del sistema

	class RobotController
	Implementa la lógica de concurrencia (asyncio y threading) para manejar la conexión BLE en segundo plano.
	Asegura que la GUI permanezca responsiva mientras el sistema busca, conecta e inyecta el programa en el Hub.

	_connect_task
	Contiene la secuencia de conexión: find_device(name="PY-SC"), conexión (self.hub.connect()), y la inyección remota del código con self.hub.run(temp_path, wait=False).
	Establece el vínculo de comunicación y carga el código del Servidor en el robot.

	send(char_cmd)
	Utiliza self.hub.write(data) para enviar comandos de un solo carácter (ej: 'w', 'a') al Hub.
	Es el módulo de comunicación encargado de transmitir las órdenes del operador al robot.

	setup_keyboard y _key_press/_key_release
	Mapean los eventos de presionar y soltar las teclas del teclado (W, S, A, D, etc.) a los comandos de movimiento y parada/freno, respectivamente.
	Permite una teleoperación reactiva y fluida, imitando un control de joystick (al presionar mueve, al soltar frena).

La Figura 4 a continuación, demuestra la implementación del módulo de comunicación del cliente, validando los puntos críticos de la Tabla 10: la conexión asíncrona (_connect_task) y el envío de comandos en tiempo real (send).
[bookmark: _a7r6yc14y9fj]Figura 6
Función send del cliente (componente controlador).
[image:]	
Análisis de la Figura:
La función send(char_cmd) es fundamental para la teleoperación. Su implementación garantiza el rendimiento del sistema, ya que el comando de movimiento se codifica a un único byte (data = bytearray(char_cmd, 'utf-8')) antes de ser enviado por Bluetooth. Esta transmisión mínima de datos es crítica para asegurar la baja latencia requerida en la teleoperación reactiva del brazo. Además, el uso de asyncio.run_coroutine_threadsafe asegura que el envío de datos sea asíncrono, evitando que la Interfaz Gráfica se congele.
[bookmark: _f6el54mo1siy]		6.2.2. Servidor

El código del Servidor reside en la variable HUB_PROGRAM dentro del componente Servidor, es un script de MicroPython diseñado para ejecutarse en el Hub LEGO Spike Prime.
URL del repositorio de GitHub: https://github.com/M47355/Proyecto-1.git
[bookmark: _x3y9mjjn3rsp]Tabla 13
Componentes importantes del código del Servidor
	Componente
	Explicación
	Función dentro del sistema

	Inicialización y Configuración
	Utiliza try/except para mapear los motores a los puertos A, B, C y E (m_base, m_brazo, m_pinza, m_elev) y enciende la luz verde para indicar que está listo.
	Prepara el hardware del robot y proporciona confirmación visual del estado del programa.

	Módulo de Recepción (Bucle Principal)
	El bucle while True utiliza uselect.select([stdin], [], [], 0) para esperar comandos sin detener el Hub, y luego lee el carácter con cmd = stdin.read(1).
	Escucha activa de comandos remotos desde el Cliente.

	Lógica de Actuación y Mapeo
	Una serie de condicionales elif que traducen el carácter recibido a una acción motora específica:
	Controla los movimientos del robot.

	Movimiento Continuo
	m_base.run(200)
(comandos 'a', 'd', 'w', 's', etc.).
	Mantiene el movimiento mientras el operador presiona el botón.

	Parada
	m_base.stop()
(comandos 'q', 'z').
	Detiene el motor de la base y la pinza.

	Freno Activo
	m_brazo.hold()
(comandos 'e', 'm').
	Aplica un freno activo para mantener la posición del brazo y el elevador, contrarrestando el peso de la carga y la gravedad.

[bookmark: _1w41snbxtkny]Figura 7
Código del Servidor (MicroPython)[image:]

Como se aprecia en la Figura 7, el código del servidor se define como una cadena de texto dentro del cliente para ser inyectada. Se observa la importación de librerías de pybricks y la configuración inicial de los motores, lo cual valida la capacidad del sistema para operar de forma autónoma una vez cargado en el Hub.
[bookmark: _dsqwwiqymz5a]

[bookmark: _bhidv32ns1eo]6.2.3.Interfaz gráfica de usuario (GUI)

La GUI fue implementada en Python utilizando la librería tkinter con un diseño temático oscuro y limpio, reside en el componente interfaz y se comunica con los demás componentes.

[bookmark: _r3p83seu1yha]Figura 8
Interfaz implementada
[image:]

[bookmark: _pyumg3utnuu2]Tabla 14
Componentes de la interfaz
	Componente
	Función

	Botón de Conexión
	Botón principal de la GUI, que inicia el proceso de conexión al robot.

	Botones de Movimiento
	Botones que envían el comando de movimiento al presionar y el comando de freno al soltar.

	Atajos de Teclado
	Indicaciones que señalan los atajos de teclado (W/S, A/D, O/C, I/K).

[bookmark: _wujeanvo39sa]7. Resultados
[bookmark: _j4tymgls38fi]	7.1 Estado actual del proyecto
La solución propuesta para la primera fase del proyecto, el brazo robótico de lego teleoperado, se encuentra en una fase de desarrollo avanzado y funcional. Se ha logrado establecer un sistema de control Cliente-Server completamente operativo, que permite la manipulación remota de la carga a través de una interfaz gráfica de usuario(GUI).

[bookmark: _p638idwv3vd]Tabla 15
	Resultados de las pruebas de cumplimiento de requisitos
	Requisito inicial
	Estado
	Detalle del cumplimiento

	Control remoto
	 Cumplido
	El sistema utiliza comunicación BLE gestionada por la clase RobotController para enviar comandos desde el PC al Hub Lego Spike Prime.

	Control de los motores
	Cumplido
	Los cuatro motores responden correctamente a los comandos enviados por la GUI y los atajos de teclado.

	Estabilidad de posición
	Cumplido
	Se implementó la función motor.hold() en los comandos de liberación de los ejes verticales asegurando que el brazo mantenga la carga contra la gravedad.

[bookmark: _pkcbpfomh2jz]	Tabla 16
	Continuación resultados de las pruebas de cumplimiento de requisitos
	Requisito inicial
	Estado
	Detalle del cumplimiento

	Interfaz de usuario
	Cumplido
	Se desarrolló una interfaz gráfica en tkinter que visualiza el estado de la conexión y proporciona un control táctil y por teclado, optimizando la usabilidad.

	Capacidad de manipulación
	Cumplido
	El brazo puede realizar un ciclo completo de trabajo (acercamiento, agarre, elevación, movimiento lateral y liberación) con la carga nominal.

[bookmark: _2hn3chdrfkbj]7.2. Problemas encontrados y solucionados
Durante la implementación se enfrentaron dificultades técnicas relevantes:

1. Bloqueo de la Interfaz Gráfica (GUI): Inicialmente, al intentar conectar con el robot, la ventana de la aplicación dejaba de responder.
Solución: Se implementó programación asíncrona (asyncio) corriendo en un hilo secundario (Daemon Thread). Esto separa la lógica de comunicación del bucle principal de la interfaz visual.

2. Caída del brazo por gravedad: El motor del brazo principal (Motor B) cedía ante el peso de la estructura cuando no recibía órdenes.
Solución: Se modificó el código del servidor (MicroPython) para cambiar el método de parada. En lugar de usar stop() (que deja el motor libre), se implementó hold() que aplica un torque activo para mantener la posición, resolviendo el problema de estabilidad de la carga.

3. Latencia en la respuesta: Se detectó un retraso al enviar comandos complejos.
Solución: Se simplificó el protocolo de comunicación a caracteres simples (ej: "w", "s") en lugar de cadenas de texto largas, reduciendo el tiempo de procesamiento y transmisión de datos.

[bookmark: _w94rycv5q1e]8. Conclusiones
En este proyecto diseñamos, construimos e implementamos un brazo robótico controlado a distancia. Combinamos la parte física y la virtual para manejar los movimientos del brazo y de la base desde lejos.
Durante el proceso, el aprendizaje más importante fue sobre la programación asíncrona. Tuvimos problemas iniciales donde la interfaz se bloqueaba al intentar conectar, lo que nos obligó a investigar y modificar el código del cliente para trabajar con hilos paralelos.
Aunque el sistema cumple con los requisitos actuales, hay oportunidades de mejora. Por ejemplo, se puede rediseñar el robot para mejorar la precisión y el control e incluso añadir movilidad. Estas mejoras harían que el brazo robótico fuera más preciso, eficiente y útil en situaciones más complejas. También nos dimos cuenta que la robótica puede ser de gran ayuda para regular la seguridad en entornos mineros y creemos que también podría expandirse a más áreas.

[bookmark: _ex3odo9qzkjz]9. Referencias

Garcia, F. (2025). Todo sobre la arquitectura cliente-servidor. Arsys Blog. https://www.arsys.es/blog/todo-sobre-la-arquitectura-cliente-servidor

Lecher, D. (s. f.). GitHub - pybricks/pybricksdev: pybricksdev: Python Package with Pybricks developer tools. GitHub. https://github.com/pybricks/pybricksdev

Pybricks Documentation — pybricks v3.6.1 documentation. (s. f.). https://docs.pybricks.com/
tkinter — Python interface to Tcl/Tk. (s. f.). Python Documentation. https://docs.python.org/3/library/tkinter.html

[4] Opcstore. (s. f.). Notebook Lenovo V14 G2 ALC Ryzen 5, 8 GB RAM, SSD 512 GB, 14”, Windows 10 Pro. https://opcstore.cl/products/notebook-lenovo-v14-alc-8gb-ssd-512gb-14-hd-w10-pro
	
[1] Falabella. (s. f.). Samsung Galaxy Tab S9 FE 256 GB. https://www.falabella.com/falabella-cl/product/132630394/Samsung-Galaxy-Tab-S9-FE-256GB/132630395

[2] SmartDeal.cl. (2023, 14 de junio). Notebook Lenovo IdeaPad 5 15ITL05, Intel Core i7, 12 GB RAM, SSD 512 GB, 15” FHD. https://www.smartdeal.cl/producto/notebook-lenovo-ideapad-5-15itl05-intel-core-i7-512gb-ssd-12gb-ram-15-fhd/

[5] The LEGO Group. (s. f.-a). LEGO Education SPIKE Prime expansion set (45681). https://www.lego.com/es-es/product/lego-education-spike-prime-expansion-set-45681

[3] The LEGO Group. (s. f.-b). LEGO Education SPIKE Prime set (45678). https://www.lego.com/es-es/product/lego-education-spike-prime-set-45678

[6] Computrabajo Chile. (s. f.). Trabajo de programador. https://cl.computrabajo.com/trabajo-de-programador

image3.png
2025-9 2025-10 2025-11 2025-12
36 |37 |38 3940 |41 |42 |43 |44 |45 46 |47 |48 |49 |50 | 51| 52

& provecto 12025 @ proyecto 12025
& Grupo ©

1] Feature #5174: L. INICIO Y PLANIFICACION e — New 100%
1] Feature #5176: Formar el equipo de trabajo R New 100%
\u) Feature #5181: Analizar la problematica B new 100%
1] Feature #5185: Redactar el informe inicial N New 100%
1] Feature #5184: Redactar la Carta Gantt N New 100%

|l Feature #5191: II. DISENO Y CONSTRUCCION P— New 100%
1] Feature #5192: Elegir disefio del tobot I New 100%
1) Feature #5195: Probar los elementos del set I New 100%
1] Feature #5243: Construir brazo del robot N New 100%
1] Feature #5244: Construir garra del robot N New 100%
1] Feature #5247: Ensamblar estructura Base N New 100%
1] Feature #5248: Probar giro de 360° N New 100%
1] Feature #5249: Probar movimiento vertical del b. I ew 100%
1] Feature #5250: Probar el agarre v liberacion de I I ew 100%

\u] Feature #5203: IV. DOCUMENTACION Y CIERRE T T T T —— New §0%
1] Feature #5189: Elaborar la bitacoras semanales ... R T T e 50
1] Feature #5251: Redactar el Informe 1 B New 100%
(] Feature #5777: Revisar Carta Gantt B New 100%
1] Feature #5206: Preparar presentacion oral 1 B |vew 100%

il Feature #5208: Redactar el informe 2

i Feature #5982: Preparar presentacién oral 2

il Feature #5257: Demostrar el producto final
&l Feature #5197: IIL IMPLEMENTACION

i Feature #5246: Programar Interfaz rafica

il Feature #5256: Investigar el software y los mét..

image6.png
Servidor

Interfaz Robot

image2.png
Control Brazo Robético
Esiado: Desconeciado Buscando / Conectado

CONECTAR ROBOT

Brazo Principal (Motor B)

[W] SUBIR [S] BAJAR
Base Giratoria (Motor A)

[A] IZQUIERDA [D] DERECHA
Pinza (Motor C)

[0] ABRIR [C] CERRAR
Elevador Muiieca (Motor E)

1] SUBIR [K] BAJAR

Atajos: WIS (brazo) - AID (base) - OIC (pinza) - K (elevador)

image8.png
e Na s wN

10
11

Punto de entrada de la aplicacién

import tkinter as tk
from interfaz import App

app = App(root)
root.mainloop()

image5.png
20
21
2
23
2
25
2
27
28
29
30
31
E?)
EES
34
35
36
37
38
39

a1
a2
a3

class RobotController:

def

def

def

"Controla la conexién y comunicacién con el Hub LEGO.

init(self):
self.hub = None

self.loop = asyncio.new_event_loop()
self.thread - threading.Thread(target-self.
self.thread. start()

self.connected - False

self._closing = False

run_loop, daemon-True)

_run_loop(self):

Ejecuta el loop de asyncio en un hilo separado.”
asyncio.set_event_loop(self.loop)
self.loop.run_forever()

connect(self, on_success, on_error):
Tnicia la conexi6n al Hub en segundo plano.
if self._closing:

on_error("EL controlador se estd cerrando.”)

return

asyncio.run_coroutine_threadsafe(
self._connect_task(on_success, on_error),
self.loop

image9.png
def send(self, char_cmd):
if self.connected and self.hub:
data = bytearray(char_cmd, ‘utf-g')
asyncio.run_coroutine_threadsafe(self.hub.urite(data), self.loop)

image11.png
HUB_PROGRAM = *"%
rom pybricks.hubs. inport. PriseHub

ron pybricks. pupdevices import Motor

rom pybricks.paraseters import Port, Color
from pybricks. tools import wait

rom usys mport stdin

nport uselect.

nicirliza o1 b y enciende 1a 1uz e rojo sientras carga
b = prinehus)
b g on(Coror 4€0)

Intenta conectar cada motor, si o esta conectado queda en None
try: m_base - Wotor(Port.A)
except: m_base = None

try: m_brazo - Motor(Port.s)
except: m_brazo = None

try: m_pinza = Motor(Port.C)
excepts n_pinza = None

try:
except:

<lev = Hotor(port.£)
ety - None.

Luz verde = listo para recibir cosandos.
hub. Light..on(Color . GREEN)

Bucle principal: espera conandos del PC
while True:
1 uselect select([stdin], [1, [1, O[]
nd - stain.read(1)

4 Motor A - Base giratorda
5 cnd - "a" and

base.run(-200)

E15f cad - "a" and n_base: n_base.run(200)
e1sf caa

hotor 8 -

e1if cad — "u” and n_brazo. run(-200)
e1sf caa n_brazo.run(290)
e1sf caa n_brazo.hold()

Wotor ¢ - pinza
C1if cad == "0 and m_pinza: m_pinza.run(-108)
elif cad == "c* and m_pinza: n_pinza.run(160)
C1if cad == "2 and m_pinza: m_pinza.stop()

Hotor € -
e15f caa

15t caa
e1sf caa

ait(10)

image12.png
© CONTROL BRAZO ROBOTICO

@ DESCONECTADO

Brazo Principal (Motor B)

Base Giratoria (Motor A)

Pinza (MotorC

[0] ABRIR [C€] CERRAR

Elevador Mufieca (Motor£)

@ Usa el teclado: W/S (brazo) - A/D (base) - O/C (pinza) - I/K (elevador)

image4.png
UNIVERSIDAD DE TARAPACA

image7.png

image1.jpg

image10.png
Ingenieri@)

Computacién e Informdtica

