
Alumnos:
Camilo Geraldo
Ignacio Cuevas
Maximiliano Burgos
Jose Quispe
Matias Sagredo

Asignatura:
Proyecto l

Profesor:
Baris Nikolai Klobertanz Quiroz

SORTING MINING:
CLASIFICADOR REMOTO DE MINERALES

PARA LA OPTIMIZACIÓN Y SEGURIDAD EN
MINERIA.

INDICE
Implementación

02

Resultados

03

Análisis y
Diseño

01

RF1

RF2

RF3

RF4

Identificación de materiales: El prototipo debe identificar cuatro tipos de materiales
representados por piezas de LEGO de los siguientes colores: rojo, azul, amarillo y verde.

Clasificación física: El prototipo debe ser capaz de mover un bloque de color identificado
hacia su cuadrante o contenedor correspondiente.

ANÁLISIS Y DISEÑO01
REQUERMIENTOS FUNCIONALES

Modo de operación automático: El sistema debe contar con una función autónoma que
ejecute cíclicamente la identificación (RF1) y la clasificación (RF2) de las piezas sin intervención
del operador.

Modo de control manual: El prototipo debe permitir la ejecución de las acciones de
clasificación (RF2) mediante comandos enviados por un operador desde la Interfaz Gráfica de
Usuario (GUI).

RF5

RF6

RF7

Visualización de datos: La interfaz gráfica debe mostrar al operador el color detectado por el
sensor del prototipo.

Gestión de parada: El sistema debe permitir al operador detener la operación del prototipo de
forma inmediata desde la interfaz gráfica.

ANÁLISIS Y DISEÑO01
REQUERMIENTOS FUNCIONALES

Control de contenedores: El prototipo debe permitir el giro de los contenedores de depósito
en ángulos de 0º y 180∘ para la recepción de piezas.

Disponibilidad: El prototipo debe garantizar una disponibilidad operativa del 100% durante
el horario de la demostración. Durante operaciones mineras, debe operar por encima del
99.5% permitiendo realizar mantenimiento y cambio de las baterías.

Robustez: El prototipo debe manejar de forma elegante situaciones inesperadas como es el
caso de detectar piezas de material que no puede clasificarse, moviendo la pieza a una zona
de rechazo sin interferir en el proceso general de clasificación de las piezas.

Usabilidad: La interfaz gráfica de usuario debe ser diseñada bajo principios de diseño
universal, debiendo obtener un puntaje mayor a 70 en el cuestionario SUS (System Usability
Scale) y al menos el 80% de los usuarios o trabajadores deben completar la tarea de
clasificación sin asistencia.

ANÁLISIS Y DISEÑO01
REQUERMIENTOS NO FUNCIONALES

ANÁLISIS Y DISEÑO01
REQUERMIENTOS NO FUNCIONALES

Rendimiento: El tiempo de latencia entre el envío de un comando manual desde la interfaz
de usuario y el inicio de la ejecución física del comando por el prototipo no debe superar los
500 milisegundos. El ciclo completo de clasificación no debe superar los 2 segundos.

Seguridad: La interfaz gráfica debe contar con un botón virtual de parada de emergencia
que al ser activado corte instantáneamente la potencia a todos los actuadores.

ANÁLISIS Y DISEÑO01
ARQUITECTURA DE SOFTWARE

La arquitectura del sistema se
basa en un modelo Cliente-
Servidor, diseñado para permitir el
control remoto y la supervisión del
proceso de clasificación de
minerales. Esta estructura separa
la gestión del usuario de la
ejecución física de las tareas en el
prototipo.

IMPLEMENTACIÓN02
FUNDAMENTOS DE MOVIMIENTO

Movimiento Rotación de Clasificador:

Tiempo de caida:

Velcidad mínima y máxima para llegar al intervalo de
4cm - 7cm

https://docs.google.com/document/d/1AQzwENBYbc7YX0YNMoQe5GYrP_HUcRu8/edit#heading=h.a9d5tt5jpegi

IMPLEMENTACIÓN02
FUNDAMENTOS DE MOVIMIENTO

Movimiento Rotación de Clasificador:

Velocidad del momento antes del impacto

Velcidad mínima y máxima de contacto entre la barra
y el bloque para alcanzar la distancia de 4cm y 7 cm

Velocidad aplicada actualmente 600 grados/ segundos aproximadamente 0.534 m/s

https://docs.google.com/document/d/1AQzwENBYbc7YX0YNMoQe5GYrP_HUcRu8/edit#heading=h.a9d5tt5jpegi

IMPLEMENTACIÓN02
FUNDAMENTOS DE MOVIMIENTO

Movimiento Rotación de Contenedores:

Velocidad angular máxima

Velocidad máxima del motor

Velocidad óptima de giro del motor

Velocidad aplicada actualmente 600 grados/ segundos aproximadamente 0.534 m/s

https://docs.google.com/document/d/1AQzwENBYbc7YX0YNMoQe5GYrP_HUcRu8/edit#heading=h.a9d5tt5jpegi

IMPLEMENTACIÓN02
CLIENTE

El cliente es la aplicación de control utilizada por el operador minero, ejecutada en un PC. Está
desarrollada en Python con una interfaz gráfica en Tkinter, y permite la interacción directa con el
sistema de clasificación. A través de esta interfaz, el operador puede realizar las siguientes
funciones:

Gestión de conexión: Iniciar y finalizar la comunicación inalámbrica con el servidor (HUB).

Modo automático (RF3): Activar o desactivar la clasificación autónoma de piezas.

Control manual (RF4): Operar remotamente el motor principal y los contenedores.

Monitoreo de sensores (RF5): Visualizar el color detectado por el sensor del prototipo.
Parada de emergencia (RF6): Detener de forma inmediata cualquier operación en
ejecución.

https://docs.google.com/document/d/1AQzwENBYbc7YX0YNMoQe5GYrP_HUcRu8/edit#heading=h.a9d5tt5jpegi

IMPLEMENTACIÓN02
SERVIDOR

En esta arquitectura, el servidor se analiza desde dos perspectivas complementarias que
permiten la ejecución de las tareas de clasificación:

Servidor Físico: Corresponde al LEGO Spike Prime HUB. Es el hardware que ejecuta el
firmware de Pybricks para ofrecer los servicios de control de motores y lectura de sensores.

Servidor Lógico: Es el componente de software encargado de representar al hardware y
gestionar la comunicación técnica con él. Este reside parcialmente en el computador del
cliente y utiliza la librería pybricksdev para enviar instrucciones al HUB mediante la
conexión Bluetooth establecida.

https://docs.google.com/document/d/1AQzwENBYbc7YX0YNMoQe5GYrP_HUcRu8/edit#heading=h.a9d5tt5jpegi

IMPLEMENTACIÓN02
WIREFRAME

https://docs.google.com/document/d/1AQzwENBYbc7YX0YNMoQe5GYrP_HUcRu8/edit#heading=h.a9d5tt5jpegi

IMPLEMENTACIÓN02

Elimina la pieza deslizando
lentamente con el fin de que no
se ingrese junto a las demás
piezas

Finaliza el código, terminando
todas las acciones y cerrando la
interfaz gráfica.

Inicia/Finaliza la conexión vía
bluetooth entre el sistema en el
computador y el hub Spike
Prime.

Visualizador que muestra el
color detectado por el sensor de
color.

Visualizador que muestra el
nombre del color detectado; en
caso de no haber piezas
muestra “No detectado”

Visualizador que muestra los
comandos ejecutados por el
sistema y los errores que
pueden producirse.

Botones que clasifican las
piezas en los contendores
correspondientes.

IInicia el sensor de colores para
luego mostrar el color detectado
en el display de colores.

Inicia el prototipo robótico en
modo automático, clasificando
los bloques de forma
automática.

GUI

https://docs.google.com/document/d/1AQzwENBYbc7YX0YNMoQe5GYrP_HUcRu8/edit#heading=h.a9d5tt5jpegi

RESULTADOS03

ESTADO ACTUAL

https://docs.google.com/document/d/1AQzwENBYbc7YX0YNMoQe5GYrP_HUcRu8/edit#heading=h.9vsc9swz7ahw
https://docs.google.com/document/d/1AQzwENBYbc7YX0YNMoQe5GYrP_HUcRu8/edit#heading=h.9vsc9swz7ahw

01

02

03

Se rediseñó la entrada de los bloques, guiándolos
de tal manera que solo pudieran ingresar en
posición vertical, estandarizando su orientación
antes de ser clasificados.

Se reestructuró la lógica de control, incorporando
puntos de verificación intermedios y
reorganizando el orden de los comandos, con el
fin de asegurar que cada etapa del proceso de
clasificación

La solución se logró mediante el apoyo puntual de
un compañero externo al equipo de trabajo quien
nos colaboró en la implementación inicial de la
conexión entre el HUB y la librería Tkinter

RESULTADOS03
PROBLEMAS

Durante el ensamblaje se detectó que los bloques
ingresaban al sistema en posiciones irregulares, lo
que dificultaba su correcta toma por la garra y
provocaba fallos en la clasificación, reduciendo la
confiabilidad del sistema.

Se detectó que el sistema realizaba movimientos
antes de finalizar la lectura del sensor de color, lo
que provocaba errores en la clasificación de
algunos bloques.

Se presentó una dificultad clave al integrar el HUB
con la interfaz en Tkinter vía Bluetooth, lo que
detuvo el avance del proyecto durante dos
semanas por falta de una conexión funcional.

SOLUCIONES

https://docs.google.com/document/d/1AQzwENBYbc7YX0YNMoQe5GYrP_HUcRu8/edit#heading=h.9vsc9swz7ahw
https://docs.google.com/document/d/1AQzwENBYbc7YX0YNMoQe5GYrP_HUcRu8/edit#heading=h.9vsc9swz7ahw

CONCLUSION
En conclusión, las correcciones realizadas para esta segunda presentación se centraron en
complementar de mejor manera los puntos establecidos, como los requerimientos
funcionales y la arquitectura de software.
 Se avanzó considerablemente en la interfaz gráfica de usuario, pasando del código en
bloques a código en Python, empleando Tkinter para la parte visual y Pybricks para la lógica
y la comunicación con el hub.
Finalmente, se solucionaron los problemas que fueron apareciendo, tales como la
codificación de la interfaz gráfica y la conexión vía Bluetooth entre el hub y la pc.

GRACIAS

