N

©) eri
lIngenier

A Computacion e Informatica

UNIVERSIDAD DE TARAPACA

©

PROTOTIPO DE UN VEHICULO
ROBOT MINERO PARA EL
TRASLADO DE MINERALES A
GRAN ESCALA: FASE 2

Integrantes: Ayleen Humire, Brandon Quipe,
German Castro, Claudio Pinazo y Daniela Poma

Profesor: Baris Klobertanz

Asignatura: Proyecto | m

Contenidos

01 Andlisis de diseno

e Especificacion de requerimientos
e Arquitectura de software
o Disenoinicial de interfaz grafica

P2 Implementacion

e Fundamentos de los movimientos
e Descripcion del sistema

03 Resultados

o Estado actual del proyecto
e Problemas encontrados y solucionados

@4 Conclusiones parciales

Introduccion

La mineria subterrdnea es una de las industrias con
mayores riesgos criticos para los trabajadores,
especialmente en las zonas de carga y transporte. Este
proyecto nace de la necesidad de aplicar los conceptos
de la Mineria 4.0, utilizando un prototipo basado en
LEGO Spike Prime y programacién en Python para crear
un sistema de transporte que pueda ser operado a
distancia, eliminando asi la exposicion humana en
entornos peligrosos.

A

2

_

y 4
_‘ ANALISIS Y DISEINO
-

Especificacion de requerimientos

REQUERIMIENTOS FUNCIONALES

Movilidad: El robot debe poder moverse a las 4 direcciones:
avanzar, retroceder, girar a la izquierda y a la derecha, ademas de
tener un sistema de velocidad que determinard la fuerza con la
que se movera.

Control: El manejo del robot debe ser mediante una interfaz
grafica accesible para el usuario mediante un archivo.exe.

Envio de informacion: El robot debe recibir érdenes enviadas a
través de la interfaz grafica con una respuesta rapida y sin
demora.

Seguridad: Ante cualquier fallo del robot, por seguridad, debe
presentar un botdn que permita el apagado y absoluta detencidn
del robot.

C

Especificacion de requerimientos

REQUERIMIENTOS NO FUNCIONALES

Disponibilidad: Se debe garantizar un funcionamiento correcto y continuo
durante las demostraciones del robot, comprobando que se puede mantener en
constante uso durante horas sin problemas de bateria o interrupciones para el
usuario.

Robustez: Se debe garantizar que el sistema pueda manejar correctamente
posibles fallos o acciones no validas, tanto en software como en hardware, sin
afectar considerablemente el rendimiento.

Rendimiento: Se debe garantizar que los comandos entregados por el usuario
sean recibidos en menos de 1 segundo, logrando una interaccién fluida y rapida.
Usabilidad: Se debe garantizar que la interfaz grafica sea intuitiva y facil de usar,
permitiendo que usuarios con poca o nula experiencia técnica puedan controlar
el robot sin complicaciones.

Compatibilidad: Se debe garantizar que el sistema sea ampliable y compatible
para integrar otros robots o mddulos sin afectar el rendimiento general.

Arquitectura de softwmare Cliente-Servidor

Cliente

Captura las instrucciones del usuario y las
envia al servidor

Interfaz grafica

Interfaz sencilla donde el usuario puede
indicar las instrucciones al robot.

|

Cliente

v
=

Interfaz Grafica

Bluetooth/USB

Socket stream sobre Bluetooth o USB.

z B2

Bluetooth /USB

Robot (SP-7)

Servidor

Recibe, interpreta y ejecuta las
instrucciones de movimiento.

Servidor

Robot (SP-7)

EI HUB recibe las instrucciones del
servidor y sigue las instrucciones para los
motores

Diseno inicial interfaz grafica

Lego SPIKE Prime

x

SPIKE Prime Control

Avanzar

[Conectar J

Retroceder

- —

Velocldad

P

A\

Parada de emergencla)

e Controles direccionales.

e Control de potencia Indicadores
visuales.

e Diseno inicial realizado en Balsamiq.

Fundamentos de los
movimientos

MODELO DE MOVIMIENTO

e Movimiento rectilineo uniformemente
acelerado (MRUA)

CONSIDERACIONES FISICAS

e Distancia determinada: 10 metros
e Aceleracién generada por dos motores
traseros
e Factores considerados:
o Masa del sistema
o Fuerzas de roce
o Distribucion del centro de masa

RESULTADO DEL ANALISIS

e Configuracion coherente con principios de
cinematica y dindmica.

e Aceleracion 6ptima para cumplir la distancia
requerida.

e Estabilidad y eficiencia mantenidas

Descripcion del Sistema
HARDWARE

e LEGO Spike Prime HUB: Actua como el cerebro del robot,
encargdndose de ejecutar el programa desarrollado en
MicroPython y de coordinar el funcionamiento de motores
y sensores.

« Motores: Se utilizan motores para la traccién del vehiculo,
los cuales permiten controlar la velocidad y el sentido de
giro de las ruedas.

o Estructura mecanica: Se utilizaron piezas de LEGO del
propio set de Spike Prime, simulando un vehiculo
transportador minero.

C

SOFTWARE

Se expondra el cdédigo principal del vehiculo, el cual

se encuentra almacenado en un repositorio de
GitHub. Este cdédigo es el responsable del control
de los motores y de la comunicacién de forma
inaldmbrica al HUB, mandando las instrucciones del
usuario utilizando una interfaz grafica.

build/ControlLego
dist

| Conexion.py

9 ControlLego.spec
| ControlMotores.py
9 Interfaz.py

L] Main.py

9 build_exe.py

B auto.py

Interfaz

tkinter tk
customtkinter ctk

queue

Conexion

Queue, Empty
BLEWorker

LegoGUI{ctk CTk)
__1nit_ (self):

super(). init ()

self
self

self.

self

self.bin
self.bi

\ O~

.title("Control LEGO Spike Prime - SP 7")
.geometry("500x650")
self.r

'::___6_._:(3)

log_queue = Queue()

.worker = BLEWorker(self.log queue)
self.

emergency -

.pressed_keys = {"w":

.color_green = ["#2EA043"
.color_red = ["#DA3633"
.color_blue = [E"#1F6FEB”
.color_gray = []"#30363D"
.color_yellow = B "#D29922"

. build ui()

e

| all("<KeyRelease>", self.

d_all("<KeyPress>", self. on key press

Interfaz.py

11d ui(self):

.btn_up = tk.Button(dpad container, text="a\nAdelante”, bg=self.color_green,

activebackground=HE"#268c3b", width=14, height=4, **btn_style)

.btn_up.grid(row=0, column=1, pady=10)
.btn_up.bind("<ButtonPress-1>", : self.cmd move("F"))
.btn_up.bind("<ButtonRelease-1>",

: self.c _5?’“ raction())

i L

.btn_left = tk.Button(dpad container, text="4", bg=self.color_blue,

activebackground=0 "#1a5cbf”, width=8, height=4, **btn style)

.btn_left.grid(row=1, column=0, padx=10)
.btn_left.bind("<ButtonPress-1>", : self.cmd
.btn_left.bind("<ButtonRelease-1>", : self.cmd

.btn_stop = tk.Button(dpad container, text="STOP", bg=self.color_red,
activebackground=0 "#b02a28", width=10, height=4, **btn_style)
.btn_stop.grid(row=1, column=1, padx=5)

.btn_stop.config(command=self.cmd emergency stop)

.btn_right = tk.Button(dpad container, text="P", bg=self.color_blue,
activebackground=E"#1a5cbf™, width=8, height=4, **btn style)
.btn_right.grid(row=1, column=2, padx=10)

.btn_right.bind("<ButtonPress-1>", : self.cmd_ste m.(‘R™))
.btn_right.bind("<ButtonRelease-1>", : self.cmd

steer("Z"))

.btn_down = tk.Button(dpad container, text="¥\nAtras", bg=self.color_yellow,
activebackground=HE"#71751f", width=14, height=4, **btn style)

.btn_down. grid(row—E, column=1, pady=13)
-bind : self.cmd move("B"))
btn dnun._i.u(‘<ButtonRelease- 1> : self.cmd _stop traction())

Interfaz

Interfaz.py

Spike Prime Control Conectar

Y
Adelante

Velocidad Traccion

Conexidén interfaz-Spike

Conexion.py

BLEN?H‘(EP: tempfile.NamedTemporaryFile(mode="w"', suffix=".py"', delete: , encoding="utf-8") tf:
__init_ (self, log queue: Queue): tf.write(LISTENER SCRIPT)

self.loop = asyncio.new event loop() tf.flush()

self.thread = threading.Thread(target=self. thread main, daemon= temp_path - tf.name

self.queue = asyncio.Queue()

self.hub =

self.running = threading.Event() self.log(f"Temp script path: {temp_path} (exists: {os.path.exists(temp_path)})")

self.log queue = log queue
619 4 self.hub.run(temp path, wait , print output)

log(self, msg: str): asynclo. sleep(2)

self.log_queue:
self.log_queue.put(msg)

self.running.set()
self.log("jListo para conducir!™)

_thread main{self): -
asyncio.set event loop(self.loop) cmd_raw = self.queue.get()
self.loop.cre

self.loop.run forever() self.hub and self.running.is set():
- packet = "{cmd_raw};"
~unner(self): payload = packet.encode('utf-8")

temp path =
: self.hub.write(payload)
self.log("Buscando hub 'SP-7'...") Exception o:
device = find device("SP-7") self.log(f"Error TX: {e}")
not device:
self.log("No se encontré hub.") asyncio.Cancellederror:

Exception H
self.hub = PybricksHubBLE(device)
self.hub.connect()
self.log("Conectado. Cargando script...")

tb = traceback.format exc()
self.log(f"Error fatal: {e} ({type(e).__name__ })\n{tb}™)

temp_path:
tempfile.NamedTemporaryFile{mode="w', suffix=".py', delete= encoding="utf-8' : os.unlink(temp path)

Control Motores

Codigo Spike [auto.py

anviar r"t"-.:':l'j':,-' I: .I :

ys . stdout .write™
vs.stdout.flush()
hub = sy e
enviar ready()
motorA = Motor(

motor_1zq = Motor(

motor dir = Mot

velocidad

giro = @

aplicar_giro(): . _ .

“E” P : . cmid sys.stdin.readline()
Muewve motor de direccic

motor dir.run target(3ee, g iro) _
= - = = : cmil :

wait(1a)

mover adelante():

cmd = omd.strip()

mover atras(): . -
, enviar ready()

motorA.dc(-velocidad)

motor_izq.dc(-velocidad)

detener():
motora.stop()
motor_1zq.stop()

RESULTADOS

e eeo ©

Estado actual del
proyecto

Socket stream demostré ser altamente
efectivo en las pruebas de conectividad. Se
logré establecer un enlace establey
continuo entre la interfaz de usuario y el
Hub del LEGO Spike Prime. El sistema
gestiona correctamente la transmision de
multiples instrucciones secuenciales y
simultdneas, permitiendo un control fluido
del vehiculo.

Problemas encontrados y /9464666/
solucionados

Incompatibilidad inicial
entre los sensores/motores

Horario insuficiente para Dificultad para codificar

el trabajo colaborativo funciones avanzadas del
del equipo robot

y la programacion en lMicro
Python

Si bien aun queda trabajo por realizar, este proceso

organizacion interna— como
entre ellas la programacién en
dispositivos fisicos, el uso de
Git y GitHub, y la integracién de

na representado una oportunidad para aplicar tanto
nabilidades blandas —como el trabajo en equipo, la
definicion de roles, la comunicacion efectiva y la

nabilidades duras,
Python orientada a
nerramientas como

ibrerias y funciones

avanzadas en Visual Studio Code.

C

GRACIAS

