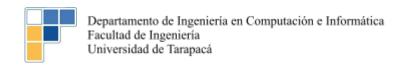
UNIVERSIDAD DE TARAPACÁ

FACULTAD DE INGENIERÍA

Departamento de Ingeniería en Computación e Informática

Sistema de Analítica en Prevención de Riesgos

Planificación - Casino Luckia Arica S.A


Autores: Andrew Campos Seguel

Gustavo Ríos Álvarez

Asignatura: Proyecto IV 2025

Profesor: Diego Aracena Pizarro

Cliente: Edgardo Flores Alarcón

Índice

1. Definición y justificación del proyecto	3
1.1. Contexto	3
1.2. Problemática	3
1.3. Solución	3
2. Alcance y objetivos	4
2.1. Objetivo General	4
2.2. Objetivos Específicos	4
2.3. Carta Gantt	5
3. Requerimientos del Proyecto	6
3.1. Funcionales	6
3.2. No Funcionales	g
4. Metodología	10
5. Modelos del sistema	11
5.1. Diagrama de contexto	11
5.2. Modelo de caso de uso	12
Análisis del Diagrama de Casos de Uso	13
3. Descripción de los Casos de Uso	14
5.3. Modelo esquema estrella	15
6. Modelo de proceso de negocio	16
7. Visuales del Proyecto	17
8. Conclusión	19
9. Referencias	20
10. Anexos	21

1. Definición y justificación del proyecto

1.1. Contexto

La información sobre seguridad y salud en el trabajo, así como los reportes de siniestros (incidentes, accidentes con o sin tiempo perdido, cuasi accidentes, horas trabajadas, días perdidos, capacitaciones, inspecciones, uso de EPP, mantenimientos y observaciones de seguridad) del Casino Luckia Arica S.A se registran en un sistema propio.

Estos registros se consolidan en reportes individuales, informes mensuales y anuales en formato PDF, elaborados manualmente. Cada informe incluye datos sobre los siniestros, las personas afectadas, la ubicación, las fechas y representaciones gráficas. El objetivo de este proceso es analizar los eventos ocurridos y desarrollar campañas y capacitaciones que contribuyan a reducir su frecuencia.

1.2. Problemática

Estos registros se consolidan manualmente informes mensuales y anuales en formato PDF, lo que genera una alta carga operativa y una probabilidad considerable de errores o pérdida de datos. La ausencia de un sistema automatizado de análisis impide transformar los datos recopilados en información útil para la toma de decisiones, dificultando la detección de tendencias, la evaluación de causas raíz y la implementación de medidas preventivas efectivas.

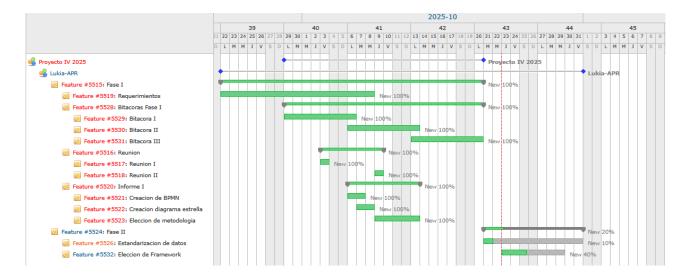
Como resultado, los informes generados presentan limitaciones en cuanto a su precisión, oportunidad y valor predictivo, reduciendo la efectividad de las campañas y capacitaciones diseñadas para disminuir la frecuencia de siniestros. Esta situación afecta la integridad de la información, el control de indicadores de desempeño en seguridad laboral y la capacidad del área de prevención para desarrollar estrategias basadas en evidencia.

1.3. Solución

Diseñar e implementar un sistema integral y automatizado de gestión y análisis de seguridad como de salud en el trabajo, que permita registrar incidentes, accidentes y actividades preventivas, además, debe generar informes precisos, oportunos y con valor predictivo, así como apoyar la toma de decisiones basada en datos para planificar campañas preventivas y capacitaciones orientadas a reducir la frecuencia de siniestros.

2. Alcance y objetivos

2.1. Objetivo General


Diseñar e implementar un sistema integral y automatizado de gestión y análisis de seguridad como de salud en el trabajo, que permita registrar incidentes, accidentes y actividades preventivas, además, debe generar informes precisos, oportunos y con valor predictivo, así como apoyar la toma de decisiones basada en datos para planificar campañas preventivas y capacitaciones orientadas a reducir la frecuencia de siniestros.

2.2. Objetivos Específicos

Objetivos específicos	Título	Descripción
OE-01	Registrar y gestionar incidentes y accidentes	Implementar un módulo que permita el registro de incidentes, accidentes y cuasi accidentes, incluyendo fecha, hora, tipo de suceso, área del trabajador, descripción, edad y otros datos relevantes de los afectados.
OE-02	Registrar actividades preventivas y seguimiento de EPP	Permitir el registro de capacitaciones, inspecciones, mantenimientos, uso de EPP y observaciones de seguridad, asegurando la trazabilidad de las acciones preventivas.
OE-03	Generar informes automáticos y dashboards	Desarrollar la funcionalidad de generación automática de informes mensuales y anuales en formato PDF, con gráficos y tablas, además de paneles interactivos que permitan el análisis visual de los indicadores clave de SST.
OE-04	Calcular y controlar indicadores de seguridad y salud laboral	Incorporar el cálculo automático de indicadores como tasa de frecuencia, gravedad, días perdidos y horas trabajadas, para monitorear el desempeño y efectividad de las medidas preventivas.
OE-05	Implementar análisis de tendencias y alertas preventivas	Permitir el análisis de datos históricos y generar alertas automáticas ante patrones recurrentes de incidentes, apoyando la toma de decisiones proactiva.
OE-06	Garantizar seguridad, integridad y disponibilidad de la información	Asegurar que los datos se almacenen de manera segura y confiable, con autenticación de usuarios, respaldos automáticos, control de acceso por roles y cumplimiento de normativas de protección de datos.

2.3. Carta Gantt

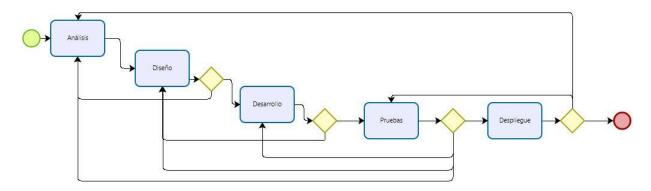
3. Requerimientos del Proyecto

3.1. Funcionales

CÓDIGO	NOMBRE	DESCRIPCIÓN	PRIORIDAD
LUAPR-01	Registro de incidentes y accidentes	El sistema debe permitir registrar incidentes, accidentes y cuasi accidentes; indicando fecha y hora; tipo de suceso; área del trabajador; descripción; edad; y otros datos del afectado.	Alta
LUAPR-02	Gestión de actividades preventivas	El sistema debe permitir registrar capacitaciones, inspecciones, mantenimientos, observaciones de seguridad y uso de EPP.	Media
LUAPR-03	Generación automática de informes	El sistema debe generar informes mensuales y anuales en formato PDF con gráficos, tablas y resúmenes estadísticos de tendencias y reportes individuales.	Alta
LUAPR-04	Control de indicadores de SSL	El sistema debe calcular automáticamente indicadores de seguridad y salud laboral (tasa de frecuencia, gravedad, días perdidos, etc.)	Alta
LUAPR-05	Consulta y análisis histórico	El sistema debe permitir consultar y filtrar registros por Rango de Fecha, Tipo de evento, Área de trabajo y por Persona.	Alta
LUAPR-06	Dashboard interactivo	El sistema debe incluir un panel visual con gráficos e indicadores clave para la toma de decisiones.	Alta
LUAPR-07	Alertas y notificaciones	El sistema debe generar alertas automáticas ante repetición de eventos o indicadores fuera de rango.	Baja

LUAPR-08	Exportación y respaldo de datos	El sistema debe permitir exportar la información a formatos Excel o CSV y realizar copias de seguridad automáticas.	Alta
LUAPR-9	Carga masiva de datos históricos	Debe permitir importar registros previos desde archivos Excel o similares.	Media
LUAPR-10	Registro de Usuarios	Debe permitir guardar los datos del afectado en la BD para uso posteriores	Alta
LUAPR-11	Gestión de usuarios y roles	Debe permitir la administración de usuarios con diferentes permisos (administrador, prevencionista y encargado de reporte sustituto).	Media
LUAPR-12	Función de Administrador	El administrador tiene la función de gestionar roles para los usuarios en el sistema	Alta
LUAPR-13	Función de Prevencionista	El prevencionista tiene las funciones de gestionar reportes, generar informes y acceso al dashboard para realizar análisis a partir de los gráficos visualizados	Alta
LUAPR-14	Función de Encargado de reporte sustituto	El encargado de reporte sustituto tiene la función de generar reportes de incidentes.	Media

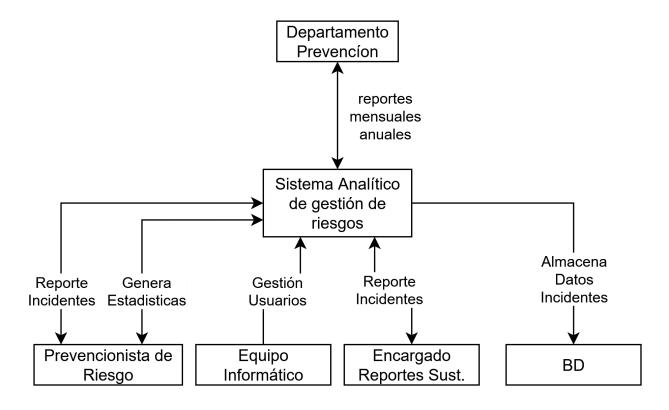
3.2. No Funcionales


CÓDIGO	NOMBRE	DESCRIPCIÓN	PRIORIDAD
LUAPR-15	Usabilidad	La interfaz debe ser intuitiva, con navegación sencilla y accesible para usuarios no técnicos.	Alta
LUAPR-16	Seguridad de la información	Los datos deben almacenarse cifrados y protegidos por autenticación segura.	Alta
LUAPR-17	Integridad de datos	El sistema debe evitar duplicación o pérdida de registros durante las operaciones.	Alta
LUAPR-18	Rendimiento	Las consultas y generación de reportes deben ejecutarse en menos de 5 segundos promedio.	Media
LUAPR-19	Disponibilidad	El sistema debe estar disponible el 99.9% del tiempo.	Alta
LUAPR-20	Compatibilidad	El sistema debe ser accesible desde navegadores modernos y dispositivos móviles (diseño responsive).	Media
LUAPR-21	Mantenibilidad	Debe permitir actualizaciones y mejoras sin interrumpir el servicio ni comprometer la información.	Media
LUAPR-22	Respaldo y recuperación	Debe contar con copias automáticas de seguridad y procedimientos de restauración ante fallos.	Alta
LUAPR-23	Escalabilidad	El sistema debe soportar el crecimiento de datos y usuarios sin pérdida de rendimiento.	Media
LUAPR-24	Cumplimiento legal	Debe cumplir con la Ley 19.628 de Protección de la Vida Privada (modificada por la Ley 21.719), y normativas laborales vigentes.	Alta

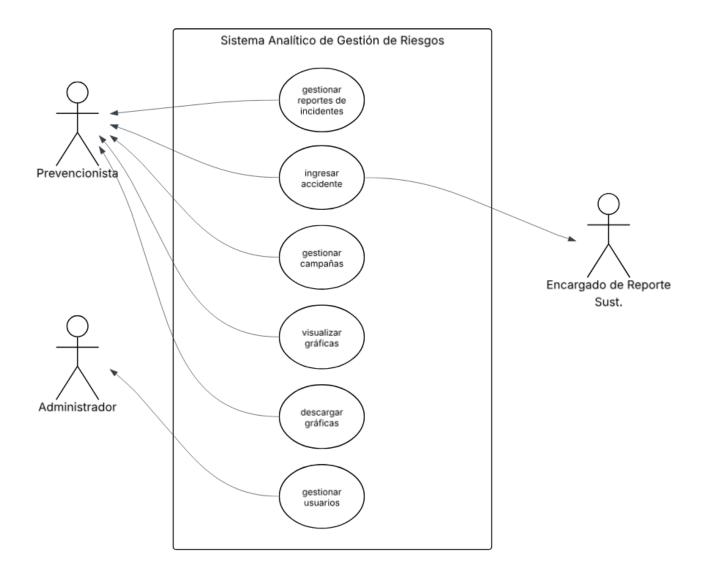
4. Metodología

Para el desarrollo del sistema se ha elegido la metodología de cascada (o waterfall), esto debido a que se adapta a las características del proyecto enfocado en un desarrollo en secuencia ordenada por cada fase, además de esto integrar a este modelo lo que sería la retroalimentación controlada dándonos mayor flexibilidad al momento de solucionar errores.

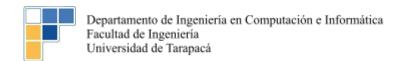
Donde tendríamos el clásico desarrollo en cascada, Análisis, Diseño , Desarrollo , Pruebas, Despliegue, agregando a esta secuencia ciclos controlados en cada fase con condiciones específicas dotando la secuencia de flexibilidad de retorno pudiendo retroceder una cantidad definida de etapas para la corrección de errores o modificación de algún apartado sin la necesidad de volver a empezar la secuencia desde el inicio, dando condiciones de retroceso con lo que se deberían de cumple para poder realizar este retroceso sin afectar el proceso de desarrollo principal.


La elección de esta metodología se justifica porque el proyecto cuenta con requerimientos bien definidos desde el inicio, lo que permite planificar y ejecutar las tareas de manera estructurada. Además, el modelo en cascada facilita la documentación formal de cada fase, el seguimiento del progreso y la verificación de entregables, aspectos esenciales para un entorno académico y para un cliente institucional como el *Casino Luckia Arica S.A.*

Asimismo, este enfoque ofrece claridad en la asignación de roles y responsabilidades dentro del equipo, asegurando un flujo de trabajo organizado y controlado. Su aplicación permitirá garantizar la trazabilidad, cumplimiento de plazos y calidad de los resultados, contribuyendo a la confiabilidad y éxito del sistema propuesto.


5. Modelos del sistema

5.1. Diagrama de contexto



5.2. Modelo de caso de uso

A partir del diagrama de casos de uso presentado, se entiende la funcionalidad y las interacciones clave dentro de un Sistema Analítico de Gestión de Riesgos.

Análisis del Diagrama de Casos de Uso

El diagrama define el alcance del sistema y cómo los diferentes actores (usuarios) interactúan con sus casos de uso (funcionalidades).

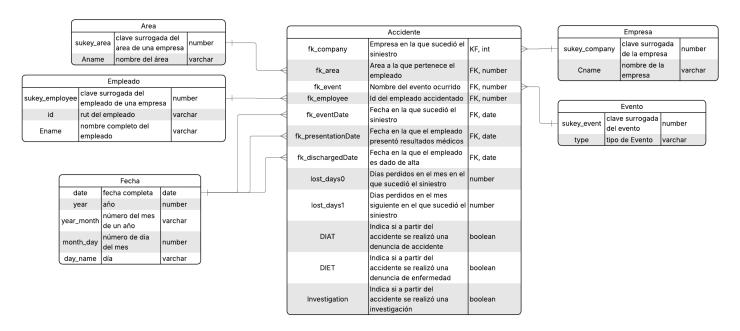
1. Sistema Analítico de Gestión de Riesgos

Proporciona herramientas para la administración, seguimiento, análisis y reporte de incidentes, accidentes, campañas y usuarios relacionados con la gestión de riesgos.

2. Actores (Usuarios del Sistema)

Hay tres actores principales definidos:

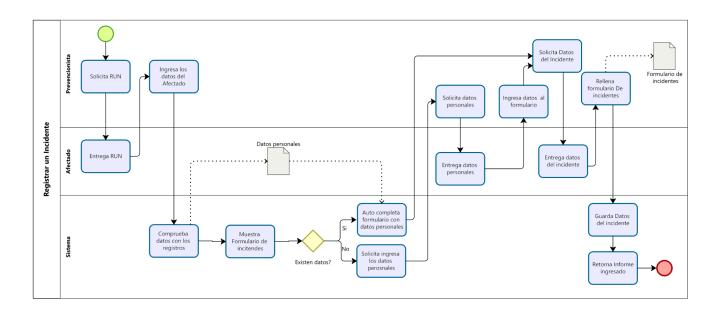
- Prevencionista: Es el actor principal con la mayor cantidad de interacciones. Es el responsable de las funciones operacionales clave de la gestión de riesgos.
- Administrador: Es el actor responsable de las funciones de gestión de acceso al sistema.
- Encargado de Reporte Sustituto: Un actor con una función única relacionada con el ingreso de reportes de incidentes, funciona como apoyo para el usuario Prevencionista.

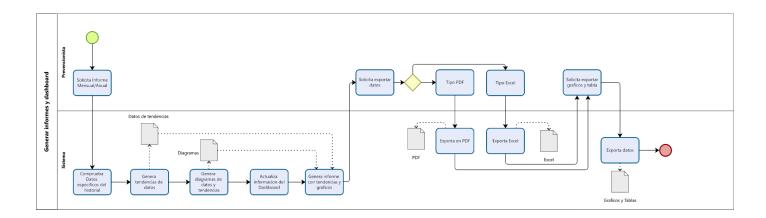


3. Descripción de los Casos de Uso

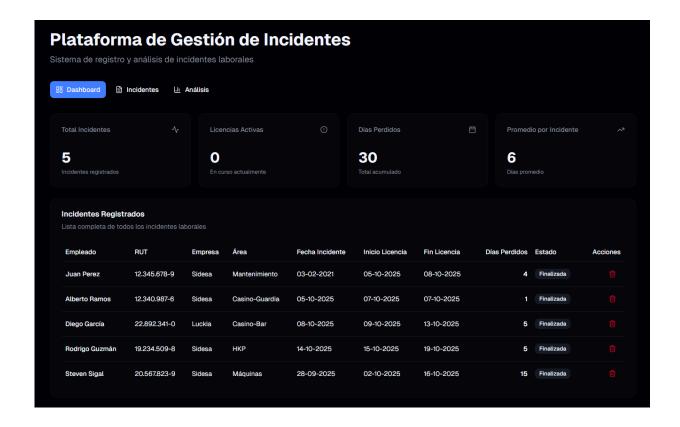
Caso de Uso	Actor(es) Involucrado(s)	Descripción
Gestionar reportes de incidentes	Prevencionista	Crear, editar, consultar y eliminar (CRUD) informes de incidentes
Ingresar accidente	Prevencionista, Encargado de reportes sustituto	Registrar información detallada sobre un accidente ocurrido
Gestionar campañas	Prevencionista	Crear, editar, consultar y eliminar campañas de prevención o seguridad
Visualizar gráficas	Prevencionista	Ver datos analíticos (probablemente sobre incidentes, accidentes o campañas) en formato gráfico
Descargar gráficas	Prevencionista	Exportar o guardar los datos analíticos para su uso externo o en presentaciones
Gestionar usuarios	Administrador	Crear, modificar, asignar roles y eliminar cuentas de usuario del sistema

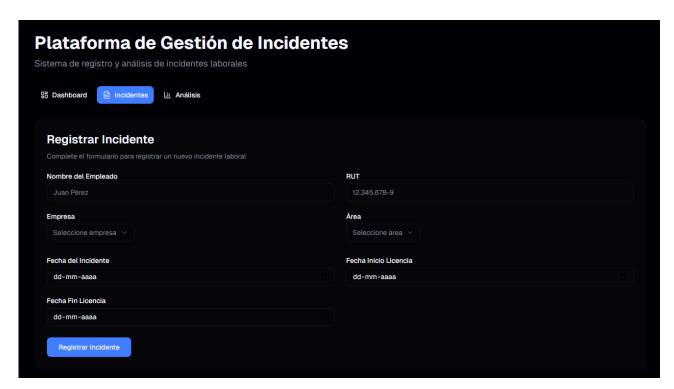
5.3. Modelo esquema estrella

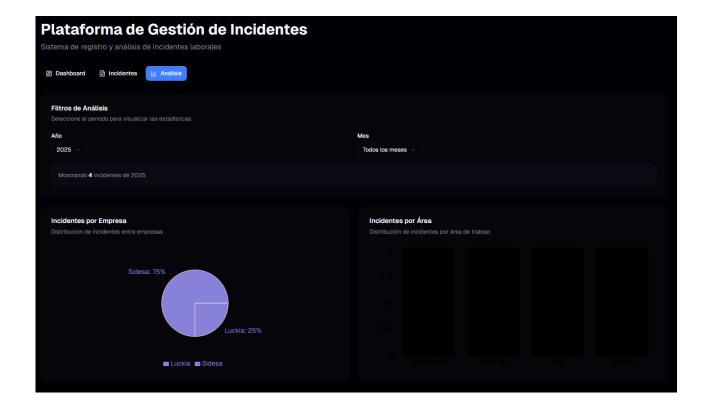


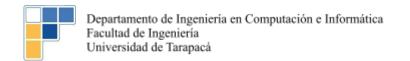

Esquema tipo estrella elegido para la gestión de datos simplificando el proceso posterior de carga, además, nos ayuda a definir el alcance de las preguntas por medio de la granularidad de la tabla de hechos.

6. Modelo de proceso de negocio


Procesos de negocio referente a las funcionalidades principales de sistema






7. Visuales del Proyecto

8. Conclusión

La incorporación del módulo de generación de informes y dashboards en el *Sistema de Analítica en Prevención de Riesgos* representa un elemento clave para optimizar la gestión de Seguridad y Salud en el Trabajo. Este componente transforma los registros de incidentes, accidentes y actividades preventivas en información visual y estadística que apoya la toma de decisiones.

El uso de un modelo estrella facilita la integración de datos y la creación automática de reportes en formato PDF, mientras que los paneles interactivos permiten un seguimiento en tiempo real de los principales indicadores. Esto mejora el control operativo, reduce tareas manuales y promueve un enfoque preventivo basado en evidencia.

En conjunto, el sistema fortalece la eficiencia, precisión y capacidad analítica del área de prevención, cumpliendo con los objetivos planteados y aportando valor tanto al cliente como al desarrollo académico del proyecto.

9. Referencias

El modelo en cascada en el desarrollo de software. (2019, 11 marzo). IONOS Digital Guide.

https://www.ionos.com/es-us/digitalguide/paginas-web/desarrollo-web/el-modelo-en-cascada/

10. Anexos