UNIVERSIDAD DE TARAPACÁ

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE INGENIERÍA CIVIL EN COMPUTACIÓN E INFORMÁTICA

Plan de Proyecto "ICarus"

Alumno(os): Martin Del Solar

Mayling Alvarez Ivan Collao Kamila Diaz

Yazuska Castillo

Asignatura: Proyecto I

Profesor: Humberto Urrutia López

Fecha	Versión	Descripción	Autor(es)
18/08/2024	1.0	Concepción del Documento	Martin Del Solar Mayling Álvarez
23/08/2024	1.1	Recopilación de Datos	Martin Del Solar Mayling Álvarez
02/08/2024	1.2	Versión Preliminar del Formato	Martin Del Solar Mayling Álvarez
14/08/2024	1.3	Revisión y Finalización del Informe	Martin Del Solar Mayling Alvarez Ivan Collao Kamila Diaz Yazuska Castillo
03/09/2024	1.4	Elaboración del ítem 3.1	Mayling Álvarez
04/09/2024	1.5	Actualización del ítem 3.3	Mayling Álvarez
07/09/24	1.6	Finalización de ítem 3	Mayling Álvarez
07/09/24	1.7	Finalización de ítem 1	Kamila Diaz
07/09/24	1.8	Finalización de ítem 4	Martin Del Solar
07/09/24	1.9	Finalización de ítem 2	Yazuska Castillo
11/09/24	1.10	Actualización de la conclusión	Iván Collao

Tabla de Contenidos

1.	Panel Ge	neral	3
	1.1.	Introducción	3
	1.2.	Objetivos	4
	1.2.1.	Objetivo General	4
	1.2.2.	Objetivos Específicos	4
	1.3.	Restricciones	5
	1.4.	Entregables	6
2.	Organiza	ción del Personal	7
	2.1.	Descripción de los Roles	7
	2.2.	Personal que Cumplirá los Roles	7
	2.3.	Métodos de Comunicación	8
3.	Planificad	ción del Proyecto	8
	3.1.	Actividades	8
	3.2.	Carta Gantt	
	3.3.	Gestión de Riesgos	10
4.	Planificad	ción de los Recursos	12
	4.1.	Hardware	12
	4.2.	Software	
	4.3.	Estimación de Costos	13
5.	Conclusion	ón	15
6	Poforonc	iae	16

1. Panel General

1.1. Introducción

En este semestre, se evidenciará la labor en equipo realizada para alcanzar el objetivo de la materia de forma colaborativa, brindando una experiencia en ingeniería. Para lograrlo, se utilizará el kit educativo de LEGO Mindstorms Education EV3 para desarrollar un robot que pueda recoger objetos, además de poder movilizarse a través de una interfaz programada por el usuario en Python.

En esta presentación, no solo mostraremos la estructura y progreso de nuestro grupo para cumplir con los requisitos de la materia, sino también compartiremos información sobre la asignación de responsabilidades, la estrategia que hemos elegido y las acciones que estamos tomando para lograr los objetivos del proyecto. También se registrarán las primeras impresiones de este proceso, así como la investigación pertinente que se llevará a cabo a lo largo del semestre.

1.2. Objetivos

1.2.1. Objetivo General

Desarrollar y programar un robot EV3 que sea capaz de movilizarse según una interfaz de python.

1.2.2. Objetivos Específicos

- o Experimentar con el Set de Lego Mindstorms Ev3 para la creación del robot.
- Armar y ensamblar un modelo con buena estabilidad, movilidad y un componente encargado para sujetar una pelota.
- Estudiar el sistema operativo de Linux, junto con la librería de Python de EV3, donde se investigará e implementará la instalación de ev3dev.
- Estudiar la librería de tkinter para generar y diseñar una interfaz gráfica apta para el usuario.

1.3. Restricciones

- Se debe programar solo en Python.
- Solo se debe utilizar la plataforma Redmine para los documentos y avance del proyecto.
- ♦ Se debe utilizar el Set de Lego Mindstorms EV3.
- Limitación de tiempo para dedicar al proyecto.
- Cantidad de integrantes limitada a solo 5.
- Disponibilidad del robot para codificar y probar.
- Robot debe ser capaz de moverse y tomar objetos con una garra.
- Se debe tener una conexión inalámbrica del robot hacia un servidor estando ambos en la misma red.

1.4. Entregables

Bitácoras: Son informes semanales que describen el avance del equipo en el proyecto, abarcando actividades realizadas, dificultades encontradas, recomendaciones para mejorar y acciones tomadas. Preparadas por un individuo designado, ofrecen un panorama exhaustivo para apoyar decisiones estratégicas, asignan responsabilidades y resaltan asuntos a tratar en grupo.

Carta Gantt: Representación visual de la programación del proyecto, mostrando en una línea de tiempo las tareas, su duración y secuencia, facilitando la gestión del tiempo y los recursos al visualizar la evolución de las actividades a lo largo del proyecto.

Informe de Formulación: Este documento detalla nuestra organización y estrategia para alcanzar los objetivos de la asignatura. Abordaremos la asignación de roles, las metas del equipo y las medidas que implementaremos para lograr el propósito académico. Además, compartiremos nuestras primeras impresiones durante el proceso de desarrollo y presentaremos la documentación relevante recopilada a lo largo del semestre.

Presentaciones: Se detallan los objetivos del proyecto, los retos superados y las soluciones aplicadas. También se resaltan los éxitos obtenidos, la distribución del equipo y se ofrece una visión general del robot.

2. Organización del Personal

La organización en un grupo es esencial para el desarrollo de un trabajo, y para ello, es necesario una distribución del trabajo necesario para lograr el objetivo del proyecto.

2.1. Descripción de los Roles

Jefe de proyecto: Representante del equipo, supervisa y organiza el progreso del proyecto.

Ensamblador: Encargado del montaje y el armado de las piezas, monitorea el cumplimiento de las funcionalidades del robot, en conjunto con el programador.

Programador: Encargado del área de la codificación y funcionamiento del robot, en colaboración del ensamblador.

Documentador: Encargado de registrar el avance del proyecto, junto con la redacción de los informes.

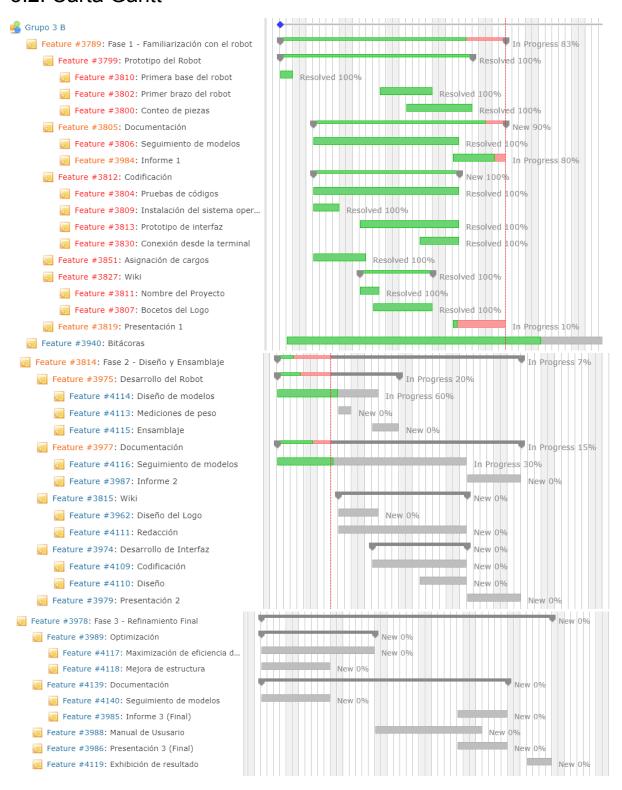
Diseñador: Encargado de la creación del logotipo y la estética del proyecto.

2.2. Personal que Cumplirá los Roles

Rol	Responsable	Involucrados
Jefe de proyecto	Yazuska Castillo	Yazuska Castillo
Ensamblador	Kamila Díaz	Kamila Díaz Martin Del Solar Iván Collao
Diseñador	Mayling Alvarez	Mayling Alvarez
Programador	Yazuska Castillo	Yazuska Castillo Mayling Alvarez
Documentador	Martín del Solar	Martin Del Solar Mayling

2.3. Métodos de Comunicación

Los principales medios de comunicación que utilizaremos son los siguientes: WhatsApp, que se utilizará para la mensajería, haciendo uso de los grupos que ofrece la plataforma; Discord, que será empleado como servicio de reuniones, aprovechando sus canales de texto y voz.


3. Planificación del Proyecto

3.1. Actividades

Nombre	Descripción	Responsables	Producto
Preparación para el proyecto	Se realiza una investigación en las plataformas entregadas.	Todo el grupo.	Reprogramación de la tarjeta MicroSD.
Prototipo del robot	Se arma un modelo de prueba del robot, siguiendo una guía básica.	Ivan Collao Yazuska Castillo	Comprensión del uso de MicroPython.
Experimentación con el robot	Pruebas de movilidad.	Yazuska Castillo Ivan Collao Mayling Álvarez	Compresión básica de las librerías.
Organización del proyecto	Planificación de roles y asignación.	Todo el grupo.	Definición del nombre del proyecto.
Primer modelo del robot	Se comienza el armado del robot.	Martin Del Solar Kamila Díaz	Confección de base para el robot.
Avance del primer modelo	Seguimiento de guía de armado.	Martin Del Solar Kamila Díaz	Confección de garra para el robot.
Término del primer modelo	Se realiza el modelado 3D del primer modelo del robot.	Mayling Álvarez	Planificación del movimiento.
Conteo de piezas	Se realiza el inventario de piezas usadas.	Kamila Díaz	Inventario de piezas.
Programación de interfaz de control	Confección de la interfaz para el control del robot usando el prototipo.	Yazuska Castillo	Se logra el control manual mediante la conexión inalámbrica.
Programación de movimientos.	Se prueban los movimientos de la garra del robot.	Martin Del Solar Kamila Díaz	Se consigue la codificación predeterminada del movimiento de la garra.

primer	ección del informe de vance	Se realiza el primer informe de avance.	Todo el grupo.	Primer informe de avance.
	ación de la entación	A base del informe, se realiza la presentación.	Todo el grupo.	Primera presentación.
produ bitáco	nino de la ucción de ras para la tapa 1	Se realizaron bitácoras semanales detallando el avance.	Martin Del Solar	Bitácoras.

3.2. Carta Gantt

3.3. Gestión de Riesgos

Se presenta a continuación una tabla que exhibe un desglose de los problemas que se han presentado a lo largo de la primera fase del proyecto. Esta tabla resume el impacto de cada desafío al clasificar el daño en cinco niveles distintos. Cada nivel está asociado con diferentes tipos de daño:

- Daño catastrófico: Las medidas a tomar en el caso son de forma inmediata, puede provocar que el proyecto se detenga o retrase significativamente, teniendo que volver a empezar desde cero.
- **2.** *Daño crítico:* Se deben tomar medidas necesarias para resolver el riesgo, debido a que puede provocar que el proyecto se retrase en varias etapas.
- **3.** *Daño circunstancial:* El riesgo se debe resolver en el momento, debido a que puede retrasar el desarrollo de una etapa base del proyecto.
- **4.** *Daño irrelevante:* El riesgo no es de mayor importancia, es un detalle imprevisto que no necesita mucha atención y se puede resolver en cualquier momento.
- **5.** Daño *recurrente*: El riesgo no es significativo, pero es reiterativo, retrasa en las sesiones de trabajo, pero no en etapas.

Riesgo	Probabilidad de Ocurrencia	Nivel de Impacto	Acción Remedial
Ausencia de piezas	80%	4	Solicitar las faltantes al administrador de piezas.
Desempeño del robot no es eficiente	60%	2	Ensamblar un robot más adecuado siguiendo guías en línea o un nuevo diseño adaptándolo a lo requerido.
Incomprensión de fallo con bibliotecas	30%	1	Volver a "flashear" el microSD y verificar la correcta instalación de éstas, luego actualizarlas para confirmar.
Horario insuficiente para el cumplimiento de tareas en conjunto	20%	4	Coordinamos los horarios disponibles del personal.
Falta de disponibilidad del equipo para la experimentación con el robot	60%	2	Solicitar un nuevo ev3 brick para probar códigos y utilizarlo como base para el ensamblaje de componentes por separado.
Personal faltando al horario asignado de trabajo	70%	4	Adelanto de tareas del personal disponible para mayor accesibilidad en caso de que el personal faltante necesite ayuda para terminar a tiempo su encargo.
Descarga de batería del EV3	50%	5	Utilizar cargador y descontinuar su uso hasta que como mínimo este sobre el 30% de carga.
Error en la codificación	60%	5	Corregir errores sintácticos y lógicos en lo posible, de no serlo investigar una solución o explorar otro enfoque.
Recibir equipo defectuoso	40%	1	Conseguir un reemplazo del equipo con el encargado de las piezas o prescindir de su uso.

Congelación del robot	60%	5	Esperar 10 minutos para ver si se resuelve automáticamente; si no, forzar el reinicio del robot.
Dificultades con la conexión wifi	80%	3	Esperar 10 minutos por si se logra volver a conectar automáticamente; si no, cambiar la conexión a una privada.
Atraso en el cumplimiento de tareas	70%	3	Comunicar al equipo, y utilizar las horas extras disponibles, para solucionarlo.
Falla de registro en el redmine	10%	1	Comunicar al administrador de la página para encontrar una solución.

4. Planificación de los Recursos

4.1. Hardware

- Set Lego Mindstorm EV3.
- Micro SD, del set de Lego Mindstorm, en el cual se podrán ejecutar las instrucciones del robot. (micro Python)
- Computador con el sistema operativo necesario para poder programar las instrucciones para el robot.

4.2. Software

- o Sistema operativo Windows y MacOs, para programar las funciones del robot.
- o Redmine, página para la organización del proyecto.
- o Visual Studio Code, editor de código.
- o Canva.
- o Krita.
- o LDD (Lego Digital Designer).
- o WSL.

4.3. Estimación de Costos

Costo de Hardware:

Producto	Precio
Set Lego Mindstorm(EV3)	\$ 1.600.000
Asus vivobook 16X	\$ 600.000
Lenovo Thinkpad x390 yoga	\$ 1.138.755
Notebook HP ENVY 15-ep1501la (486K5LA) Con Processador Intel Core	\$ 779.990
MacBook Pro Retina 13" i5 8GB RAM (128 GB SSD / Plata)	\$ 600.000
Notebook Toshiba Tecra Z40 C1410LA P/N PT463U-07P01Y	\$ 899.990
Apple iPad" Décima Generación (2024) 128GB Wi-Fi - plateado	\$ 799.990
Apple Pencil 1ra Generación	\$ 100.990
Tablet samsung galaxy tab s7 fe 12.4" 4gb ram negro de 64gb	\$ 739.990
Micro SD	\$ 11.990
Total:	\$ 6.530.715

Costo de Software:

Producto	Precio
Licencia Microsoft Office	\$ 14.000
Total:	\$ 14.000

Costo de Trabajador:

Rol	Horas	Horas Extra	Precio / Hora
Jefe de proyecto	72 horas	17 horas	\$ 30.000
Programador	72 horas	15 horas	\$ 25.000
Ensamblador	72 horas	15 horas	\$ 24.000
Diseñador	72 horas	15 horas	\$ 23.000
Documentador	72 horas	12 horas	\$ 23.000
Total :	-	-	\$ 10.866.000

Destacado:

- La contabilización de las horas trabajadas comienza a partir de la formación del grupo de trabajo.
- Para la categorización de las horas de trabajo, se tuvo en cuenta el tiempo de trabajo en clases.
- Para la categorización de las horas extras, se tuvo en cuenta el tiempo en las que se trabajó fuera del horario de clase, pero dentro del mismo departamento.

Total de Costo:

Costo Hardware	\$ 6.530.715
Costo Software	\$ 14.000
Costo Empleados	\$ 10.866.000
Total :	\$ 17.410.715

5. Conclusión

Tras el análisis y de nuestro progreso puede ver que al comienzo de nuestro proyecto tuvimos dificultades para idear una manera efectiva de implementar la funciones de garra para el robot EV3, tanto en el armado como en el desarrollo de la funcionalidad del mismo

Finalizando la primera fase del proyecto, nuestro equipo ha experimentado y comprendido los fundamentos para el desarrollo del proyecto, para así poder continuar al siguiente paso en el desarrollo: Diseño y ensamblaje, el cual se centraría en la implementación de una garra funcional y sus respectivas requeridas funciones, además de las funciones básicas del movimiento del robot.

6. Referencias

Página de Compra de Lego Mindstorm EV3 "Set Básico Lego Mindstorm EV3". Amazon.com. Disponible: http://surl.li/ldaib

Página de Compra de Notebook Asus "Notebook Asus G513IC-HN073W". Lider.cl. Disponible: http://surl.li/ldafv

Página de Compra de Notebook HP "Notebook HP spectre x360 convertible 14-ea0510la" HP.com Disponible: http://surl.li/ldagg

Página de Compra de Notebook Acer "Notebook Acer Nitro 5" ripley.com Disponible: http://surl.li/ldaha

Página de Compra de Notebook Lenovo "Ideapad Gaming 3" mercadolibre.cl Disponible: http://surl.li/ldahk

Página de Compra de Ipad Pro "Apple iPad Pro 11" falabella.com Disponible: http://surl.li/ldahu

Página de Compra de Apple Pencil "Apple Pencil 2da Generación" falabella.com Disponible: http://surl.li/ldahw

Página de Compra de Licencia Canva "Licencia Canva" canva.com Disponible: http://surl.li/ldban

Página de Compra de Licencia Microsoft
"Licencia Microsoft" microsoft.com Disponible: http://surl.li/ldbap

Página de Compra Procreate "Procreate" apple.com Disponible: http://surl.li/ldbas