## UNIVERSIDAD DE TARAPACÁ



# **FACULTAD DE INGENIERÍA**

# DEPARTAMENTO DE INGENIERÍA CIVIL EN COMPUTACIÓN E INFORMÁTICA



Plan de Proyecto "Lego spike"

> Alumno(os): Renato chacon Bruno Rojas Milton Porlles

Profesor: Baris Nikolai Klobertanz Quiroz

## Historial de cambios

| Fecha      | Versión | Descripción                                                | Autor(es)                                      |
|------------|---------|------------------------------------------------------------|------------------------------------------------|
| 08/09/2025 | 1.0     | Planificación sobre proyecto                               | Renato Chacon<br>Bruno Rojas<br>Milton Porlles |
| 22/09/2025 | 1.1     | Investigación sobre<br>códigos                             | Renato Chacon<br>Bruno Rojas                   |
| 24/09/2025 | 1.2     | Construcción de prototipo número 1                         | Bruno Rojas<br>Renato Chacon<br>Milton Porlles |
| 08/10/2025 | 1.3     | Revisión de prototipo 1                                    | Renato chacon                                  |
| 10/10/2025 | 1.4     | Programación de<br>movimientos                             | Bruno Rojas                                    |
| 13/10/2025 | 1.5     | Uso de robot                                               | Renato Chacon<br>Bruno Rojas<br>Milton Porlles |
| 15/10/2025 | 1.6     | Prototipo número 2                                         | Renato Chacon<br>Bruno Rojas                   |
| 15/10/2025 | 1.7     | investigación de<br>medios para<br>creacion de<br>software | Bruno Rojas                                    |
| 16/10/2025 | 1.8     | Informe numero 1                                           | Milton Porlles<br>Renato Chacon                |

Proyecto 1

# Tabla de Contenidos

| 1. Panel general                                 | 4  |
|--------------------------------------------------|----|
| 1.1. Introducción                                | 4  |
| 1.2. Objetivos                                   | 5  |
| 1.2.1. Objetivo general                          | 5  |
| 1.2.2. Objetivos Específicos                     | 5  |
| 1.3. Restricciones                               | 5  |
| 1.4 Entregables                                  | 5  |
| 2. Organizacion del Personal                     | 6  |
| 2.1 Descripción de los Roles                     | 6  |
| 2.2 Personal que cumplira los Roles              | 6  |
| 2.3 Métodos de Comunicación                      | 7  |
| 3. Planificación del Proyecto                    | 7  |
| 3.1 Actividades                                  | 7  |
| 3.2 Carta Gantt                                  | 9  |
| 3.3 Gestión de Riesgos                           | 10 |
| 3.3.1 Tabla correspondiente a gestión de riesgos | 11 |
| 4. Planificación de los Recursos                 | 12 |
| 4.1 Hardware                                     | 12 |
| 4.2 SoftWare                                     | 12 |
| 4.3 Estimación de Costos                         | 13 |
| 5. Conclusión                                    | 15 |
| 6 Referencias                                    | 16 |

# 1. Panel general

#### 1.1. Introducción

Nuestro proyecto consiste en la construcción y programación de un camión transportador utilizando LEGO Spike, con el objetivo de controlar sus movimientos de manera remota. Para esto, combinamos piezas mecánicas con sensores y motores, creando un vehículo funcional que pueda desplazarse hacia adelante, retroceder y girar con precisión.

Además, desarrollaremos un programa que permita manejar el camión como si fuera un control remoto, aprovechando las herramientas de LEGO Spike. Este proyecto nos permitirá aplicar conocimientos de robótica, programación y trabajo en equipo, mientras diseñamos un sistema práctico y eficiente que simula un vehículo real en miniatura.

## 1.2. Objetivos

## 1.2.1. Objetivo general

Construir y programar un robot para que sea capaz de moverse a través de un programa de control remoto.

## 1.2.2. Objetivos Específicos

- Aprender y dar uso del set de Lego Spike para la creación de un robot
- Armar y ensamblar un robot con movilidad, estabilidad para poder transportar un objeto
- Aprender, estudiar y analizar el programa de lego spike para la utilización del robot

- Programar mediante Applnventor un emulador de mando para la utilización del robot mediante el celular
- Lograr que el robot Spike cumpla con sus objetivos propuestos

#### 1.3. Restricciones

- Se debe utilizar el set de lego Spike
- Solo se debe utilizar la plataforma de Redmine para subir documentos, carta Gantt y avances del proyecto
- Cantidad de integrantes limitadas 5 personas máximo
- El robot debe cumplir sus funciones como moverse y girar hacia los lados
- Se debe cumplir una coneccion inalambrica por bluetooth mediante celular o computador
- Modificaciones del robot semanales
- Entrega de bitácoras semanales

#### 1.4 Entregables

Bitácora: es un registro donde se anota todo el proceso de construcción y programación del robot, desde las primeras ideas hasta las pruebas finales. En ella se escriben los avances de cada día, los materiales usados, los problemas que aparecieron, las soluciones que se aplicaron y lo que se fue aprendiendo en el camino. Su objetivo es dejar constancia del trabajo realizado y mostrar cómo el proyecto fue tomando forma paso a paso.

Carta Gant: es una herramienta que sirve para organizar y planificar las tareas de un proyecto en el tiempo. Se presenta como una tabla o calendario donde se anotan las actividades que se deben realizar, la fecha en que comienzan, cuándo terminan y cuánto duran.

Informe de evaluación: es como un resumen donde explicas de qué va tu proyecto y cómo piensas hacerlo. Ahí cuentas qué quieres lograr, por qué lo haces, qué cosas vas a necesitar y los pasos que seguirás para que funcione. Básicamente sirve para tener todo claro antes de empezar y mostrar que tu proyecto está bien planeado.

# 2. Organizacion del Personal

## 2.1 Descripción de los Roles

Jefe de proyecto: La persona que representa al equipo, revisa bitácoras, redmine etc y organiza el proyecto.

Programador: Es la persona encargada de la planificación del código para que el robot pueda cumplir las funciones pedidas por el profesor.

Documentador: Encargado de la realización de informes, bitácoras, redmine etc.

#### 2.2 Personal que cumplira los Roles

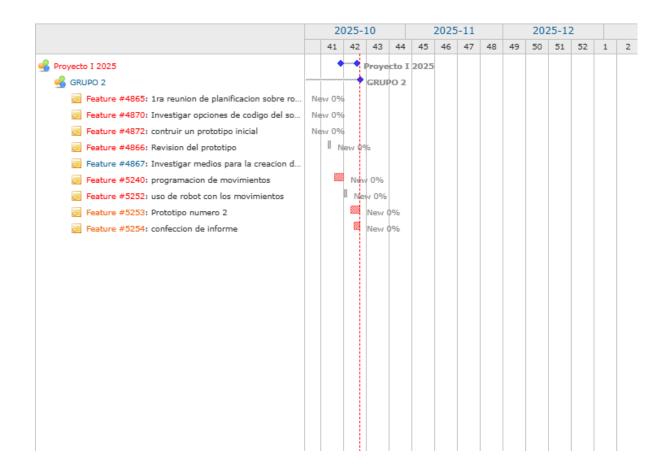
| Rol              | Responsable    | Involucrados                     |
|------------------|----------------|----------------------------------|
| Jefe de proyecto | Renato Chacon  | Renato Chacon                    |
| Programador      | Bruno Rojas    | Bruno Rojas                      |
| Documentador(es) | Milton Porlles | Milton Porlles, Renato<br>Chacón |

#### 2.3 Métodos de Comunicación

Los principales métodos que se utilizaron fueron los siguientes:

Whatsapp: Este método nos sirve para ver y hablar cosas rápidas, ya sea alguna modificación de último minuto o proponer alguna reunión.

Discord: Método que nos sirve para realizar modificaciones y hacer llamadas en grupo para cambios o simplemente para trabajar todos juntos también para resolver dudas que tengamos cada uno.


# 3. Planificación del Proyecto

# 3.1 Actividades

| Nombre                                          | Descripción                                                                                      | Responsable                  | Producto                                                                                                                                |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Planificación del<br>Proyecto                   | Se realiza la<br>investigación de<br>todo el material<br>dado                                    | Todo el grupo                | Lograr tener<br>conocimiento previo<br>antes de trabajar                                                                                |
| Investigación sobre<br>software para uso        | Búsqueda de qué<br>software de lego<br>spike es el mejor<br>para la<br>programación del<br>robot | Bruno Rojas<br>Renato Chacon | Tener el mejor<br>software a nuestro<br>gusto que nos deje<br>hacer lo que<br>queramos respecto<br>a modificaciones y<br>nuevos códigos |
| Organización del proyecto                       | Dividir roles, saber<br>quien va a hacer<br>cada cosa y<br>determinar un jefe<br>de grupo        | Todo el grupo                | Orden a la hora de<br>trabajar                                                                                                          |
| Revisión de piezas                              | Conteo y vistazo de piezas entregadas                                                            | Todo el grupo                | Determinar el<br>material que<br>tenemos para poder<br>trabajar a gusto                                                                 |
| Prototipo número 1<br>del robot                 | Realización del<br>prototipo número 1<br>del robot                                               | Renato Chacon<br>Bruno Rojas | Prototipo de robot<br>funcional                                                                                                         |
| Revisión del prototipo                          | Ver detalles y ver<br>errores                                                                    | Milton Porlles               | Verificar si el robot<br>tiene algun detalle                                                                                            |
| Programación de<br>movimientos                  | Se usa el software<br>elegido para la<br>primera<br>programación del<br>robot lego spike         | Bruno Rojas                  | Robot<br>completamente<br>programado para<br>poder usarse y<br>hacer movimientos                                                        |
| Uso del robot con<br>movimientos<br>programados | Probar robot con los<br>movimientos<br>programados                                               | Renato Chacon                | Robot funcional y<br>prueba de todos los<br>movimientos para<br>ver si hay algún<br>detalle el cual revisa                              |
| Prototipo número 2<br>del robot                 | Realización de cambios al prototipo                                                              | Renato Chacon                | Cambios como eliminación de                                                                                                             |

|                                                  | 1                                                                               |                                 | piezas, cambio de formas etc.                                      |
|--------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------|
| Programación de movimientos nueva                | Nuevos<br>movimientos en el<br>robot                                            | Bruno rojas                     | Aplicación de<br>movimientos nuevos<br>en el prototipo<br>número 2 |
| Investigación<br>lenguaje para crear<br>joystick | Buscar la correcta<br>herramienta que nos<br>ayude para<br>programar un joystik | Todo el grupo                   | Encontrar solución a nuestro problema                              |
| Confección del primer informe sobre Lego spike   | Realización de informe sobre robot                                              | Renato Chacon<br>Milton Porlles | Entrega de informe<br>número 1                                     |
| Término de<br>bitácoras de las<br>etapa 1        | Bitácoras<br>terminadas y<br>subidas al redmine                                 | Renato Chacon                   | Entregas de<br>bitacoras                                           |

## 3.2 Carta Gantt



## 3.3 Gestión de Riesgos

Se muestra la creación de una tabla la cual muestra los problemas que se pueden presentar mediante la creación de la primera fase del proyecto. resume y compara los tipos de daños los cuales pueden presentar el robot

- 1. Daño catastrófico: Hay que actuar de inmediato, porque puede detener el proyecto o hacer que tengamos que empezar todo de nuevo.
- 2. Daño crítico: Es necesario tomar medidas para solucionarlo, ya que puede causar retrasos importantes en varias partes del proyecto
- 3. Daño circunstancial: Se debe atender cuando ocurra, porque puede retrasar una parte importante del proyecto.
- 4. Daño irrelevante: No es algo grave, solo un detalle que se puede arreglar en cualquier momento sin afectar mucho el proyecto.
- Daño recurrente: No es serio, pero sucede varias veces y puede retrasar un poco las sesiones de trabajo, aunque no afecta las etapas principales del proyecto.

# 3.3.1 Tabla correspondiente a gestión de riesgos

| Riesgo                                                                               | Nivel de impacto    | Acción remedial                                                                                                             |
|--------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Falla en los motores del carro                                                       | Daño catastrófico   | Revisar conexiones y calibración del motor; reprogramar el bloque de movimiento; reemplazar motor si es necesario           |
| Error en la programación                                                             | Daño crítico        | Analizar el código paso a<br>paso, probar con trayectos<br>cortos y ajustar valores de<br>giro o velocidad.                 |
| Obstrucción en la pista (el carro se detiene o se desvía)                            | Daño circunstancial | Limpiar la pista, asegurar<br>que no haya objetos<br>externos, y rediseñar el<br>entorno para evitar<br>obstáculos.         |
| El bloque inteligente no<br>enciende o pierde<br>comunicación con los<br>sensores    | Daño catastrófico   | Reiniciar el sistema,<br>verificar batería y firmware<br>si persiste, reemplazar el<br>bloque o reprogramar.                |
| Ligeros retrasos en la<br>entrega del objeto, sin fallar<br>la misión                | Daño irrelevante    | Registrar el incidente,<br>optimizar tiempos de<br>programación y velocidad si<br>es necesario.                             |
| Batería con carga<br>insuficiente en medio de la<br>prueba                           | Daño recurrente     | Comprobar nivel de batería<br>antes de cada ejecución<br>mantener baterías de<br>repuesto cargadas.                         |
| Pequeño error visual en la alineación del carro                                      | Daño irrelevante    | Corregir si se desea una<br>mejor presentación                                                                              |
| Fallas aleatorias en la<br>lectura del sensor de<br>distancia                        | Daño recurrente     | Recalibrar sensores con<br>frecuencia, limpiar la<br>superficie y probar en<br>distintos ambientes de luz.                  |
| Leve vibración o ruido<br>durante el trayecto que no<br>afecta la entrega del objeto | Daño irrelevante    | Comprobar que las piezas estén firmemente conectadas no requiere acción inmediata, solo registro para mantenimiento futuro. |

# 4. Planificación de los Recursos

## 4.1 Hardware

- Set lego spike
- Computador para la realización del sistema
- Celular para uso como controlador del robot

#### 4.2 SoftWare

- Sistema operativo windows para programar las funciones del robot
- Redmine, página para la organización del proyecto
- Applnventor página que nos ayuda a crear el joystick para las funciones del robot
- Github para almacenar y guardar algunos datos
- Documentos de google para la realización del informe

# 4.3 Estimación de Costos

#### Costo del hardware:

| Producto                                                                                                                                         | Precio      |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Set lego spike                                                                                                                                   | \$772.306   |
| Notebook Gamer Asus TUF Gaming A15<br>Ryzen 7 8GB RAM 512GB SSD 15,6"<br>NVIDIA RTX 2050                                                         | \$619.000   |
| Notebook Gamer Nitro V15<br>ANV15-51-53W1-1 / Intel® Core™ i5 8<br>Núcleos / NVIDIA® GeForce® RTX 2050 /<br>16GB RAM / 512GB SSD / 15,6" FHD IPS | \$699.000   |
| Cougar PC (ryzen 5 5600x ,rtx 3060 zotac gaming, 16gb de ram a 3200mhz asus am4 tuf gaming x570-plus)                                            | \$1.400.000 |
| Total                                                                                                                                            | \$3.490.306 |

## Costo del Software:

| Producto                     | Precio   |
|------------------------------|----------|
| Licencia Software lego spike | \$26.700 |
| Total                        | \$26.700 |

#### Costo del Trabajador:

| Rol              | Horas | Horas Extra | Precio/Hora |
|------------------|-------|-------------|-------------|
| Jefe de proyecto | 54    | 9           | \$35.000    |
| Programador      | 60    | 5           | \$24.000    |
| Documentador     | 51    | 1           | \$25.000    |
| Total:           | -     | -           | \$3.661.000 |

#### Total de costo:

| Costo Hardware  | \$3.490.306 |
|-----------------|-------------|
| Costo Software  | \$26.700    |
| Costo Empleados | \$3.661.000 |
| Total:          | \$7.178.006 |

## 5. Conclusión

El inicio del proyecto "Lego Spike" nos permitió explorar y familiarizarnos con las herramientas necesarias para construir y programar el auto transportador. Esta primera etapa se enfocó en la planificación, el diseño del prototipo y la organización del trabajo en equipo, sentando las bases para los desarrollos futuros.

Aunque aún estamos en etapas iniciales, los avances realizados nos han dado claridad sobre cómo enfrentar los próximos desafíos, optimizar movimientos y mejorar el control del auto. Además, nos permitió identificar aspectos importantes sobre programación, ensamblaje y coordinación, que serán clave para las siguientes fases del proyecto.

En definitiva, esta primera fase ha sido fundamental para establecer una dirección clara y preparar al equipo para continuar avanzando de manera efectiva hacia los objetivos finales.

#### 6. Referencias

Set lego spike prime (utilizado para realizar el robot)/

https://www.ebay.com/itm/115737438795?chn=ps&mkevt=1&mkcid=28&google\_free\_listing\_action=view\_item

#### Notebook utilizado para la programacion/

https://www.abc.cl/notebook-gamer-asus-tuf-gaming-a15-ryzen-7-8gb-ram-512gb-ssd-156-nvidia-rtx-2050/28419970.html?gad\_source=1&gad\_campaignid=22377352254&gbraid=0AAAADjipnSTrSAqkPTGAMxSIO1\_UM9CC&gclid=CjwKCAjw0sfHBhB6EiwAQtv5qYHoOfzyUG7rCcum2P5w4MpWjlGSem7erUE6nVh9hnklY9lK8IJ6YhoCb0kQAvD\_BwE

#### Notebook utilizado para la investigacion/

https://www.acerstore.cl/products/laptop-gamer-nitr-v15-rtx-2050?variant=44953134629049
&country=CL&currency=CLP&utm\_medium=product\_sync&utm\_source=google&utm\_conte
nt=sag\_organic&utm\_campaign=sag\_organic&utm\_source=google&utm\_medium=cpc&utm
campaign=PMAX-PA-Gamer&gad\_source=1&gad\_campaignid=19487522397&gbraid=0AA
AAADMKsGguHmM793cl92hun9Bb-jkpM&gclid=CjwKCAjw0sfHBhB6EiwAQtv5qVL-O59SX
PegzWkhEOOJUjDuheevXmolJ0axM\_7QZDUCnoKllM0FnhoCed4QAvD\_BwE