UNIVERSIDAD DE TARAPACÁ

DEPARTAMENTO DE INGENIERÍA CIVIL EN COMPUTACIÓN E INFORMÁTICA

Plan de Proyecto "FleteX"

Alumno(os): Felipe Diaz

Jose Yampara Pablo Andia Edynson Tola Martin Acevedo

Asignatura: Proyecto I

Profesor: Baris Nikolai Klobertanz

Historial De Cambios

Fecha	Versión	Descripción	Autor(es)
44/00/2025	1.0	Decemberán de información	Felipe Dlaz
11/09/2025	1.0	Recopilación de información.	Jose Yampara
			Martin Acevedo
			Pablo Andia
			Edynson Tola
12/00/2025	1.1	Crassián dal nambra dal provesta	Martin Acevedo
12/09/2025	1.1	Creación del nombre del proyecto.	Pablo Andia
24/00/2024	4.0	Cambias an la martada	Jose Yampara
24/09/2024	1.2	Cambios en la portada.	Felipe Diaz
			Felipe Dlaz
	1.3	Incorporación de la carta gantt.	Jose Yampara
25/09/2024			Martin Acevedo
		3	Pablo Andia
			Edynson Tola
02/10/2025	1.4	Objetivos generales y específicos.	Felipe Diaz
03/10/2025	1.5	Incorporación de Tablas de roles y actividades	Edynson Tola, Felipe Diaz
09/10/2025	1.6	Finalización de Introducción.	Edynson Tola
10/10/2025	1.7	Incorporación de tabla de riesgos.	Pablo Andia
16/10/2025	1.8	Finalización de la conclusión.	Felipe Diaz
17/10/2025	1.9	Revisión de ortografía y formato.	Edynson Tola
11/09/24	1.10	Actualización de la conclusión.	Edynson Tola

Tabla de Contenidos

1.	Panel Ge	eneral		4
	1.1.	Introducción	4	
	1.2.	Objetivos	4	
	1.2.1.	Objetivo General	4	
	1.2.2.	Objetivos Específicos	4	
	1.3.	Restricciones	5	
	1.4.	Entregables	5	
2.	Organiza	ción del Personal		6
	2.1.	Descripción de los Roles		6
	2.2.	Personal que Cumplirá los Roles		6
	2.3.	Métodos de Comunicación		6
3.	Planifica	ción del Proyecto		7
	3.1.	Actividades		7,8
	3.2.	Carta Gantt 9		
	3.3.	Gestión de Riesgos		10,11,12
4.	Planifica	ción de los Recursos		13
	4.1.	Hardware		13
	4.2.	Software		13
	4.3.	Estimación de Costos		14,15
5.	Conclusi	ón		16
6	Poforono	viae		17

1. Panel General

1.1. Introducción

La industria minera enfrenta el desafío de mantener altos niveles de productividad sin comprometer la seguridad de los trabajadores.

Como estudiantes de **Ingeniería Civil en computación e Informática**, nuestro objetivo fue simular el proceso de **transporte de mineral en minería subterránea**, aplicando principios de automatización y control remoto mediante el uso del kit **LEGO Spike Prime**.

El proyecto busca poder crear un prototipo de transporte de minería, que logre optimizar y garantizar la seguridad de las personas.

Para esto, se seguirán las ideas empleadas en la Minería 4.0, en donde se implementaron mejoras tecnológicas en la automatización para aumentar la producción y la reducción de la exposición humana.

1.2. Objetivos

1.2.1. Objetivo General

Idear, construir y programar un robot con el set Spike Prime. El cual debe poseer la capacidad de moverse por control total del usuario, para poder lograr simular el transporte automatizado de minerales (bloques), mediante una interfaz gráfica de usuario (GUI). Todo esto debe ser construido con las piezas disponibles del LEGO Spike Prime.

1.2.2. Objetivos Específicos

- Estudiar los componentes del set Lego Spike Prime.
- Proponer y seleccionar el mejor prototipo para el proyecto.
- o Construir el prototipo seleccionado.
- Investigar y analizar las librerías disponibles en Python, para el correcto control de los legos.
- Crear una estructura eficiente de programación, mediante funciones y algoritmos. (avance, retroceso, giro y frenado).
- Desarrollar una interfaz en App Inventor que reciba las instrucciones del robot seleccionado.

1.3. Restricciones

- o Se debe programar solo en Python.
- o Solo se debe utilizar la plataforma Redmine para los documentos y avance del proyecto.
- o Se debe utilizar solo el Set de Lego Spike Prime.
- o El uso del set sólo está habilitado en la universidad.
- o Cantidad de integrantes limitada a solo 5.
- o El control remoto está limitado por la conectividad Bluetooth y el alcance del hub del LEGO Spike Prime.
- o Tiempo límite para la finalización del proyecto.

1.4. Entregables

Bitácoras: Informes semanales que describen el avance general del equipo en el proyecto. Incluye actividades realizadas, dificultades encontradas, recomendaciones para mejorar y acciones tomadas.

Carta Gantt: Representación visual de la programación del proyecto, mostrando en una línea de tiempo las tareas, su duración y secuencia, facilitando la gestión del tiempo y los recursos al visualizar la evolución de las actividades a lo largo del proyecto.

Informe de Formulación: Este documento detalla nuestra organización y estrategia para alcanzar los objetivos de la asignatura. Abordaremos la asignación de roles, las metas del equipo y las medidas que implementaremos para lograr el propósito académico.

Presentaciones: Se detallan los objetivos del proyecto, los retos superados y las soluciones aplicadas. También se resaltan los éxitos obtenidos, la distribución del equipo y se ofrece una visión general del robot.

2. Organización del Personal

La organización en un grupo es esencial para el desarrollo de un trabajo, y para ello, es necesario una distribución del trabajo necesario para lograr el objetivo del proyecto.

2.1. Descripción de los Roles

Jefe de proyecto: Representante del equipo, supervisa, organiza el progreso del proyecto y gestiona las reuniones grupales.

Ensamblador: Encargado del montaje, armado del robot y del conteo de piezas del set Lego Spike Prime.

Programador: Encargado del área de la codificación y funcionamiento del robot.

Documentador: Encargado de realizar las bitácoras semanales, llevar una retroalimentación sobre las dificultades y actividades a realizar cada semana. También es el encargado de realizar el informe.

Diseñador: Encargado de la creación de la interfaz (GUI), presentaciones y logos o imágenes necesarias para el correcto desarrollo del proyecto.

2.2. Personal que Cumplirá los Roles

Rol	Responsable	Involucrados
Jefe de proyecto	Martin Acevedo	Martin Acevedo
Ensamblador	Jose Yampara	Jose Yampara Felipe Diaz Martin acevedo
Diseñador	Felipe Diaz	Edynson Tola Jose Yampara
Programador	Pablo Andia	Pablo Andia Jose Yampara Felipe Dlaz
Documentador	Edynson Tola	Felipe Diaz Edynson Tola

2.3. Métodos de Comunicación

En cuanto a los medios de comunicación que utilizaremos, el medio principal será la aplicación de celular Whatsapp, se usará principalmente para acordar actividades, dividir trabajo y dar avisos importantes respecto al presente proyecto.

De manera conjunta, se hará uso de plataformas como Gmail para la transmisión de documentos y archivos relacionados a la confección del proyecto.

3. Planificación del Proyecto

3.1. Actividades

Nombre	Descripción	Responsables	Resultados
Organización del proyecto	Planificación de roles y asignación.	Todo el grupo.	Definición del nombre del proyecto y división de roles.
Conteo de piezas	Se realiza el inventario de piezas usadas.	Jose Yampara	Inventario de piezas.
Análisis de tipos de robots	Se evaluaron los objetivos del proyecto, para la correcta elección del prototipo.	Todo el grupo.	Selección del robot "Carrito de carga" en Lego Education Spike".
Selección del robot "Carrito de reparto"	Se arma el robot según el tutorial de la app "Lego Education Spike - 3.5.1"	Jose Yampara Felipe Diaz Pablo Andia	Separación de piezas para el armado del robot.
Testeos de prueba con la codificación mediante bloques.	Pruebas de movilidad.	Pablo Andia Edynson Tola Martin Acevedo	Bosquejo de las funciones y algoritmos a desarrollar.
Investigación sobre la mejor librería de python para el control del "Carrito de reparto"	Se seleccionó la librería Pybrick,	Pablo Andia Edynson Tola	Análisis de las librerías disponibles.
Programación de interfaz de control en App Inventor		Jose Yampara Felipe Diaz	Se logra el control manual mediante Bluetooth.

Programación de movimientos.	Codificación de las funciones del robot.	Pablo Andia Martin Acevedo	Funciones funcionales para el movimiento del carrito de compras.
Confección del primer informe de avance		Felipe Diaz Edynson Tola	Primer informe de avance.
Realización de la presentación	Confección de un presentación en Canva	Edynson Tola, Felipe Diaz.	Primera presentación.
Realización de Bitácoras semanales	Recopilación de los avances realizados en la junta grupal de la semana.	Edynson Tola	Bitácoras.

3.2. Carta Gantt

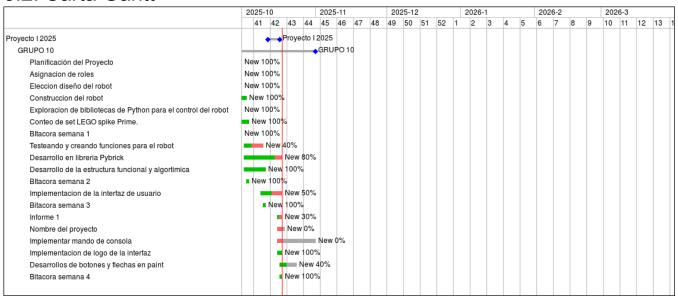


Figura 1: Carta Gantt

3.3 Gestión de Riesgos

Se enumeraron de menor a mayor los grados de los posibles riesgos que puedan ocurrir en el transcurso del proyecto:

- 1. Daño momentáneo : Riesgo menor que no para el desarrollo del proyecto. Generalmente tiene solución inmediata.
- 2. Daño menor: Riesgo de poca importancia pero que es reiterativo. Puede solucionarse en cualquier momento.
- 3. Daño relevante: Riesgo que retrasa el correcto desarrollo del proyecto, se debe resolver a la mayor brevedad posible.
- 4. Daño criticó: Riesgos que deben solucionarse de forma inmediata, de lo contrario puede provocar la detención del proyecto.

Riesgo	Nivel de Gravedad	Acción Remedial
Ausencia de piezas	4	Verificar si fue ausencia de fábrica o error de alguien del grupo.
Desempeño del robot no es eficiente	2	Buscar información en línea para lograr identificar las fallas.
Incomprensión de fallo con bibliotecas		Buscar ejemplos en medios oficiales para solucionar el problema.
Horario insuficiente para el cumplimiento de tareas en conjunto	3	Coordinación de una reunión fuera de clases, en el mejor horario posible para cada integrante.
Personal faltando al horario asignado de trabajo	4	Preguntar la causa de su ausencia, para poder gestionar otra reunión en horarios disponibles.
Error en la codificación	2	Investigar el origen del error y comunicarse al desarrollador.
Recibir equipo defectuoso	4	Conseguir un reemplazo del equipo con el encargado de las piezas

Dificultades con la conexión wifi	1	Usar cable ethernet o compartir red por datos móviles
Atraso en el cumplimiento de tareas	2	Priorizar tareas más importantes para aumentar el rendimiento del proyecto. Agendar reunión en horarios libres si es necesario.
Falla de registro en el redmine	4	Comunicar al administrador de la página para encontrar una solución.

4. Planificación de los Recursos

4.1. Hardware

- o Set Lego Spike Prime, necesario para la correcta construcción del robot.
- Computador con el sistema operativo necesario para poder codificar las funciones de movimiento del robot.
- Celulares.
- Cable Ethernet

4.2. Software

- Sistema operativo Windows
- o Redmine
- Visual Studio Code.
- o Paint.
- o PyBricks.
- Whatsapp
- o Gmail

4.3. Estimación de Costos

Costo de Hardware:

Producto	Precio
Set Lego Spike Prime	\$ 650.000
Notebook Acer Aspire Lite	\$ 490.000
Notebook Lenovo v14 g2 ALC AMD Ryzen 5	\$ 650.000
Mouse Logitech MX Master 3S Grafito	\$84.990
Celular celular Xiaomi POCO X4 PRO 5G	\$389.000
Total:	\$2.263.990

Costo de Software:

Producto	Precio
Windows 11 home - Licencia	\$ 9.990
Total:	\$9.990

Costo de Trabajador:

Rol	Horas	Horas Extra	Precio / Hora
Jefe de proyecto	42 horas	12 horas	\$ 22.000
Programador	33 horas	15 horas	\$ 20.000
Ensamblador	9 horas	6 horas	\$ 16.000
Diseñador	15 horas	18 horas	\$ 18.000
Documentador	24 horas	12 horas	\$ 16.000
Total :	123	63	\$ 3.558.000

Notas:

- o Las horas de trabajo, son las horas de trabajo en el horario de
- Las horas extras son horas trabajadas fuera del horario de clases, pero dentro del departamento Ingeniería Civil en Computación e Informática.

Total de Costo:

Costo Hardware	\$ 2.263.990
Costo Software	\$ 9.990
Costo Empleados	\$ 3.558.000
Total:	\$ 5.831.980

5. Conclusión

El proyecto permitió comprender cómo la **automatización y el control remoto** pueden mejorar significativamente la **seguridad y eficiencia en el transporte minero**.

Mediante el uso del **LEGO Spike Prime** y una interfaz desarrollada con **App Inventor**, esperamos lograr simular un sistema de transporte que minimice la intervención humana en zonas peligrosas

6. Referencias

1.- ROBOTIX Hands-on Learning. (2014). Manual de usuario: Spike Prime [PDF]. https://www.robotix.es/es/recursos-gratuitos

2.- Universidad de Tarapacá. (2025). Guía para la creación del proyecto. Intranet UTA. https://portal.uta.cl/sign-in?redirectURL=%2Fhome