UNIVERSIDAD DE TARAPACÁ

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE INGENIERÍA CIVIL EN COMPUTACIÓN E INFORMÁTICA

Informe Inicial "Brazo Robótico de agarre con LEGO"

Alumno(os): Carlos Cossio

Bryan Palacios Franco Churata Benjamín Aguilera Joaquín Quezada

Asignatura: Proyecto I

Profesor: Baris Klobertanz

Historial de Cambios

Fecha	Versión	Descripción	Autor(es)
26/09/2025	1.0	Concepción del documento	Carlos Cossio
29/09/2025	1.1	Recopilación de datos del proyecto	Benjamín Aguilera
1/10/2025	1.2	Redacción de ítems iniciales	Franco Churata
6/10/25	1.3	Inclusión de planificaciones recursos y riesgos	Carlos Cossio
10/10/25	1.4	Penúltima revisión y pulimento de detalles	Byran Palacios
17/10/25	1.5	Finalización del informe	Carlos Cossio

Proyecto I Plan de Proyecto Avance

Tabla de Contenidos

1. P	anorama General	4
1.1.	Especificación del Problema	4
1.2.	Objetivos	4
1.	.2.1. Objetivo General	4
1.	.2.2. Objetivo Específico	4
1.3.	Restricciones	5
1.4.	Entregables	5
2. O	rganización del Personal	5
2.1.	Descripción de los Roles	5
2.2.	Personal que cumplirá los Roles	6
2.3.	Mecanismos de Comunicación	6
3. P	lanificación del Proyecto	6
3.1.	Actividades	6
3.2.	Carta Gantt	7
3.3.	Gestión de Riesgos	7
4. P	lanificación de los Recursos	8
4.1.	Hardware	8
4.2.	Software	8
4.3.	Estimación de Costos	8
5. C	conclusión	9
6. R	eferencias	9

1. Panel General

1.1 Introducción

Durante el desarrollo del semestre, nuestro grupo llevará a cabo la construcción, integración y programación de un brazo robótico de agarre. El objetivo principal es diseñar un sistema automatizado capaz de sujetar, levantar y depositar bloques en un vehículo robótico de transporte, el cual será ensamblado y programado por otro grupo dentro del mismo proyecto colaborativo.

Este proyecto forma parte de una colaboración entre tres equipos, donde cada uno cumple un rol definido: diseño del brazo de agarre, desarrollo del vehículo autónomo y coordinación del sistema conjunto mediante comunicación y control sincronizado.

El trabajo se centra en las etapas de experimentación mecánica, diseño estructural y cinemático, ensamblaje funcional, programación del sistema de control y documentación técnica del proceso. Asimismo, se aplican metodologías de trabajo colaborativo, gestión de tareas mediante herramientas digitales y principios de ingeniería de control y automatización, con el propósito de lograr una integración eficiente entre los distintos subsistemas del proyecto.

1.2 Objetivos

1.2.1 Objetivo General

Desarrollar y programar un brazo robótico de agarre capaz de tomar y trasladar bloques hacia un vehículo de carga automatizado, mediante una interfaz de control manual operada por el usuario. El sistema estará conformado por mecanismos de accionamiento y un módulo de control programable, permitiendo realizar movimientos coordinados y precisos entre el brazo robótico y el camión dentro del entorno experimental.

1.2.2 Objetivos Específicos

- Analizar distintos diseños de sistemas de agarre y mecanismos de sujeción, evaluando su eficiencia estructural y capacidad de manipulación mediante piezas LEGO.
- Diseñar y ensamblar un modelo funcional del brazo robótico que presente estabilidad mecánica y precisión en el movimiento de agarre.

- Programar la secuencia de movimientos del sistema de agarre utilizando la plataforma de programación visual y posteriormente migrar el control a código Python para una mayor flexibilidad.
- Coordinar y colaborar con los demás grupos involucrados en el proyecto para sincronizar las funciones de carga y descarga entre el brazo robótico y el vehículo automatizado.
- Documentar el proceso de desarrollo mediante informes técnicos y bitácoras semanales rotativas, registrando avances, ajustes y resultados de cada etapa.

1.3 Restricciones

- Se debe programar en Python.
- Se debe utilizar el set LEGO Spike Prime y su kit de expansión.
- El robot debe ser capaz de tomar y soltar bloques sin errores.
- Se debe mantener conexión entre el computador y el robot mediante cable o conexión inalámbrica estable.
- Cantidad de integrantes limitada a cinco.

1.4 Entregables

- Bitácoras semanales: Informe del avance del grupo, rotando el responsable cada semana
- Carta Gantt: Cronograma del proyecto con las actividades principales.
- Informe de Formulación: Documento actual que describe la organización, planificación y objetivos.
- Presentación Final: Exposición del funcionamiento de la garra y los resultados obtenidos.

2. Organización del Personal

2.1 Descripción de los Roles

Jefe de Proyecto / Documentador: Coordina el grupo, redacta informes y bitácoras.

Ensambladores: Encargados del armado físico del robot y de probar la garra.

Programadores: Desarrollan los movimientos y controles del robot en la app Spike Prime y Python.

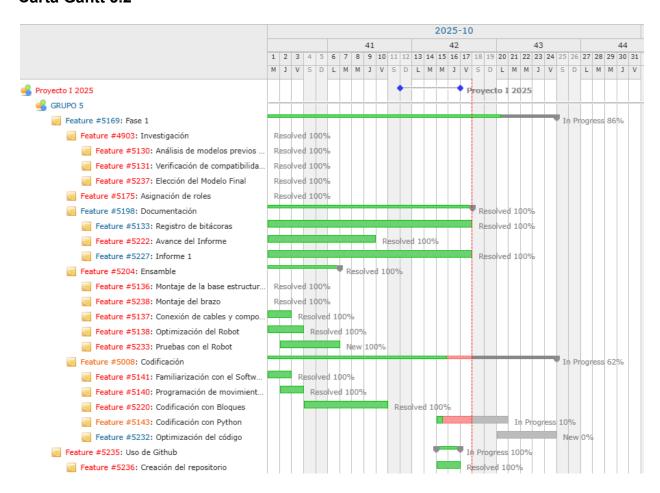
Los roles son rotativos según la semana, para fomentar el aprendizaje integral del equipo.

2.2 Personal que Cumplirá los Roles

Rol	Responsable	Involucrados
Jefe de Proyecto / Documentador	Carlos Cossio	Todo el grupo
Ensambladores	Franco Churata, Bryan Palacios	Franco, Bryan
Programadores	Joaquín quesada, Benjamín Aguilera	Joaquín, Benjamín
Apoyo General	Todo el grupo	Todos los integrantes

2.3 Métodos de Comunicación

- WhatsApp: para coordinación rápida y avisos inmediatos.
- Reuniones presenciales: durante las clases de laboratorio.
- Redmine: para entrega de documentos e informes semanales.


3. Planificación del Proyecto

3.1 Actividades

Nombre	Descripción	Responsable	Producto
Análisis Inicial	Revisión de ideas y mecanismos de garra	Todo el grupo	Diseño Conceptual
Ensamblaje del robot	Construcción del modelo base y conexión de piezas	Franco , Bryan	Garra parcialmente funcional
Programa Inicial	Pruebas de movimiento mediante Spike Prime	Benjamín , Joaquín	Robot en Movimiento
Adaptación de código	Conversión de bloques a Python	Benjamín, Joaquín	Código en Python funcional

Elaboración de	Registro de avances semanales	Carlos, grupo	Bitácoras
Informe y Bitácora		rotativo	semanales
Presentación Final	Preparación de exposición y demostración	Todo el grupo	Presentación del proyecto

Carta Gantt 3.2

Gestión de Riesgos 3.3

Riesgos	Nivel de Impacto	Acción Remedial
Falta de piezas	3	Solicitar piezas de reemplazo o usar piezas del kit de expansión

Pérdida del robot o desarme entre clases	2	Guardar el robot en un lugar seguro y registrar su estado al finalizar cada sesión
Falta de tiempo y carga académica	3	Coordinar mejor los horarios y distribuir tareas entre los miembros
Errores de codificación	4	Revisar código en equipo y comparación ejemplos de Spike Prime
Incompatibilidad con mando externo	1	Buscar alternativas dentro del software Spike Prime o mediante Python.

4. Planificación de los Recursos

4.1 Hardware

- Set LEGO Spike Prime• Kit de expansión de Spike Prime
- Computadores personales (5)
- Cable de conexión robot-computador

4.2 Software

- Spike Prime App
- Visual Studio Code
- Python
- Redmine (para informes)

4.3 Estimación de Costos

Producto Precio

LEGO Spike Prime \$600.000

Kit de expansión \$150.000

Proyecto I Plan de Proyecto Avance

Laptops (propias) -

Software (licencias académicas) -

Total Estimado \$750.000

5. Conclusión

Durante las primeras semanas del proyecto, el grupo logró diseñar, ensamblar y poner en funcionamiento un brazo robótico de agarre utilizando el kit LEGO Spike Prime. A pesar de enfrentar dificultades como la falta de componentes estructurales específicos, problemas de compatibilidad con controladores externos y retrasos derivados del reensamblaje del prototipo, se ha conseguido un avance significativo en el desarrollo del sistema mecatrónico.

Actualmente, el brazo robótico es capaz de realizar movimientos controlados de apertura y cierre mediante bloques de programación visual en la plataforma Spike. El siguiente objetivo del equipo consiste en migrar el control a un entorno de programación en Python, lo que permitirá mayor flexibilidad en la gestión de sensores, motores y rutinas de movimiento.

El equipo ha mantenido una participación constante, comunicación efectiva y una buena distribución de tareas, factores que han permitido cumplir satisfactoriamente los objetivos definidos para esta primera etapa del proyecto

6. Referencias

- Sitio oficial LEGO Education Spike Prime: https://education.lego.com/es-es/product/spike-prime
- Plataforma Redmine UTA: https://redmine.uta.cl
- Guías de programación Spike Prime en Python (LEGO Education).