

# SISTEMA DE CLIMATIZACIÓN AUTOMATIZADO

PROYECTO II

PROFESOR:
DIEGO ARACENA

INTEGRANTES:
ANGIE MARTINEZ
POLETTE MONTT
BASTIAN SUCSO

## **RESUMEN FASE PASADA**

## 99 PROBLEMÁTICA

Una gestión ineficiente de la climatización puede generar condiciones interiores desfavorables. Esta situación impacta directamente en el bienestar de los habitantes y puede tornarse especialmente peligrosa en climas extremos, comprometiendo la salud y la seguridad, en particular de las personas más vulnerables.



# OBJETIVO GENERAL

Implementar un sistema de climatización automatizado utilizando una Raspberry Pi como controlador principal, que garantice un ambiente confortable.

## OBJETIVOS ESPECÍFICOS

Car a

Instalación de sensores: Utilizar sensores de temperatura para medir tanto el ambiente externo.

2

Implementación de los sensores en la Raspberry Pi 3 3

Interfaz de usuario: Crear una interfaz simple para que los usuarios puedan monitorear y ajustar parámetros del sistema

4

Desarrollar entregables, como el manual de usuario y el poster informativo

## FASE III: IMPLEMENTACION

1 Plan de Integración

2 Modelo de Implementación

Módulos de Implementación

4 Problemas Encontrados

5 Soluciones propuestas

6 Trabajo Futuro

Conclusión

## PLAN DE INTEGRACIÓN

## INTEGRACIÓN DE HARDWARE Y SOFTWARE

- Sensores de temperatura:
   Verificar la conexión y
   calibración de los sensores con
   la Raspberry Pi.
- Raspberry Pi: Instalar el sistema operativo, los controladores y las librerías necesarias para la comunicación con los sensores y actuadores.
- Actuadores (ventilador y calefactor): Asegurar la conexión y funcionamiento bajo diferentes condiciones simuladas.

## INTEGRACIÓN DE LA INTERFAZ DE USUARIO

- Diseño y pruebas: Validar que la interfaz permita monitorear y configurar el sistema desde dispositivos conectados.
- Pruebas de conectividad:
   Garantizar que la Raspberry
   Pi y la interfaz se
   comuniquen de manera
   eficiente.

## PRUEBAS DEL SISTEMA COMPLETO

- Simulación de
   Temperaturas: Evaluar los
   ajustes automáticos del
   climatizador en diferentes
   rangos.
- Mantenimiento
   Predictivo: Probar
   notificaciones y respuestas
   ante fallos simulados.

# MODELO DE IMPLEMENTACIÓN

## Objetivo: Proveer una guía clara sobre cómo llevar a cabo la instalación y puesta en marcha del sistema en un entorno residencial. Fases de Implementación

#### Fase 1: Instalación física

- · Montaje de sensores en ubicaciones estratégicas del hogar.
- · Conexión de actuadores al sistema eléctrico y a la Raspberry Pi.

#### Fase 2: Configuración inicial

- Configuración del rango de temperaturas en la interfaz de usuario.
- · Ajuste de los parámetros del mantenimiento predictivo.

#### Fase 3: Pruebas funcionales

- · Simular escenarios de temperatura para evaluar la respuesta del sistema.
- Validar que las alertas y notificaciones funcionen correctamente.
- Capacitación del Usuario Final
- Proveer un manual de usuario detallado y realizar una demostración práctica de las funciones principales.

## MÓDULOS IMPLEMENTADOS

#### **INTERFAZ DE USUARIO**

La interfaz se desarrolló en tkinter y PIL para ofrecer una experiencia amigable. Permite visualizar la temperatura actual, establecer rangos deseados, recibir mensajes de error o alarmas en el caso de errores de funcionamiento.

## CONTROLADOR CENTRAL (RASPBERRY PD)

Se implementó la biblioteca de RPi.GPIO, la cual controla la lógica del sistema haciendo reaccionar los actuadores, en este caso la luz LED y el ventilador, que permiten mantener las condiciones de temperatura fijadas por el usuario final.

### **SENSORES Y ACTUADORES**

Los sensores recogen información sobre las temperaturas externas. Los actuadores generan respuestas automáticas conforme las temperaturas que caen dentro del rango establecido.

## CÓDIGOS IMPLEMENTACIÓN

CONEXIÓN DE LA RASPBERRY PI 3 AL SENSOR DE TEMPERATURA DS18B20. ADEMÁS DE LA CONEXIÓN DEL ACTIVADOR LUZ LED, AL CUMPLIR LA CONDICIÓN

```
temp.py X
C: > Users > angie > 💠 temp.py
       import os
       import glob
       import time
       import RPi.GPIO as GPIO
      # Configuración del GPIO para el LED
      LED_PIN = 17 # Cambia esto según el pin que estés usando
      GPIO.setmode(GPIO.BCM)
      GPIO.setup(LED_PIN, GPIO.OUT)
      base_dir = '/sys/bus/w1/devices/'
       device folders = glob.glob(base dir + '28*')
       if len(device folders) == 0:
          raise RuntimeError("No se encontraron sensores de temperatura!")
       device folder = device folders[0]
       device_file = device_folder + '/w1_slave'
      def read_temp_raw():
          with open(device file, 'r') as f:
              lines = f.readlines()
          return lines
      def read temp():
          lines = read temp raw()
          while lines[0].strip()[-3:] != 'YES':
              time.sleep(0.2)
              lines = read temp raw()
          equals_pos = lines[1].find('t=')
          if equals pos != -1:
              temp string = lines[1][equals pos + 2:]
              temp_c = float(temp_string) / 1000.0
```

```
temp.py 1 X
 C: > Users > angie > 💠 temp.py > ...
       def read_temp():
               return temp c
           return None
  37
       try:
           while True:
               temp c = read temp()
               print(f"Temperatura actual: {temp_c:.2f}°C")
  41
  42
               # Control del LED según el rango de temperatura
               if temp c > 20.0: # Cambia este valor al rango deseado
                   print("Temperatura baja, encendiendo LED")
                   GPIO.output(LED PIN, GPIO.HIGH) # Enciende el LED
  47
               else:
                   print("Temperatura normal o alta, apagando LED")
                   GPIO.output(LED PIN, GPIO.LOW) # Apaga el LED
               time.sleep(1)
  51
       except KeyboardInterrupt:
  52
           print("Finalizando programa...")
       finally:
           GPIO.cleanup() # Limpia la configuración de los pines
  55
```

# PROBLEMAS ENCONTRADOS

#### **GROVEPI**



Incompatible con los sensores seleccionados y la Raspberry Pi 4.

### **RASPBERRY PI 4**



La comunicación entre la Raspberry Pi 4 y los sensores fue **inestable** 

### SENSOR DE TEMPERATURA Y HUMEDAD



Los sensores mostraron un comportamiento **inconsistente** en las lecturas de datos.

# SOLUCIONES PROPUESTA

## SUSTITUCIÓN DE HARDWARE



Se **optimizó** el sistema con una Raspberry Pi 3 y una protoboard.

## **CAMBIO DE SENSORES**



Se mejoró la **fiabilidad** con el sensor DS18B20.

## **INDICADORES VISUALES**



Un LED aportó **claridad** al sistema al facilitar la identificación de errores o estados críticos.

#### **MEDIDAS GENERALES**



Estas acciones representaron un **progreso** importante al resolver los problemas técnicos más críticos del proyecto.

## TRABAJO FUTURO

Con base en los resultados obtenidos, se identificó como la principal debilidad del presente proyecto la falta de cumplimiento adecuado en la integración entre el usuario y la Raspberry Pi mediante conexión Wi-Fi. Esta deficiencia genera dificultades significativas en términos de usabilidad y simplicidad para el usuario final. En futuros desarrollos, se busca abordar y resolver esta limitación, con el objetivo de optimizar sustancialmente la experiencia de usuario.

## CONCLUSIÓN

- EL USO DE LOS SENSORES DE TEMPERATURA DS18B20 MEJORARON DE FORMA DESCOMUNAL LA IMPLEMENTACIÓN EN EL RASPBERRY PI, AL HABER UN MEJOR MANEJO DE CONTENIDO A LA HORA DE LA INSTALACIÓN.
- UNA INTERFAZ DE USUARIO ACCESIBLE Y FÁCIL DE USAR MEJORA SIGNIFICATIVAMENTE LA EXPERIENCIA DEL USUARIO FINAL, PERMITIENDO UN MONITOREO Y CONTROL INTUITIVO DEL SISTEMA.
- A PESAR DE ESTAS LIMITACIONES, EL PROYECTO DEMUESTRA SU VIABILIDAD COMO UNA SOLUCIÓN ADAPTABLE Y ESCALABLE PARA LA GESTIÓN DE CLIMATIZACIÓN EN DIVERSOS ENTORNOS RESIDENCIALES. LA INCLUSIÓN DE MANTENIMIENTO PREDICTIVO SIGUE REPRESENTANDO UNA VENTAJA SIGNIFICATIVA, AL PREVENIR FALLAS Y EXTENDER LA VIDA ÚTIL DE LOS EQUIPOS, MINIMIZANDO LOS COSTOS ASOCIADOS A REPARACIONES IMPREVISTAS.

## REFERENCIAS

- 1.RUIZ, C. (2020). IMPLEMENTACIÓN DE SENSORES DE TEMPERATURA CON RASPBERRY PI PARA CONTROL DE CLIMATIZACIÓN. REVISTA ELECTRÓNICA DE TECNOLOGÍAS AVANZADAS, 5(2).

  HTTPS://WWW.RETAVANZADAS.COM/IMPLEMENTACION-SENSORES-RASPBERRY-PI-CLIMATIZACION
- 2.PÉREZ, A. (2021). USO DE SENSORES DE TEMPERATURA Y HUMEDAD PARA CONTROL INTELIGENTE DE CLIMATIZACIÓN CON RASPBERRY PI. ELECTRÓNICA Y HOGAR INTELIGENTE.

  HTTPS://www.electronicahogar.com/control-climatizacion-raspberry-pi
- 3.LÓPEZ, J. (2021, JULIO 12). MANTENIMIENTO PREDICTIVO EN SISTEMAS DE CLIMATIZACIÓN USANDO RASPBERRY PI. INGENIERÍA Y AUTOMATIZACIÓN.

  HTTPS://WWW.INGAUTOMATIZACION.COM/MANTENIMIENTO-PREDICTIVO-CLIMATIZACION-RASPBERRY
- 4.SMITH, K. (2019). ADVANCED TEMPERATURE CONTROL WITH RASPBERRY PI. INTERNATIONAL JOURNAL OF IOT APPLICATIONS, 7(3), 45-58. RECUPERADO DE <a href="https://www.ijota.com/advanced-temperature-control-raspberry-pi5">https://www.ijota.com/advanced-temperature-control-raspberry-pi5</a>
- 5.GONZÁLEZ, R. (2020). OPTIMIZACIÓN DE SISTEMAS DE CLIMATIZACIÓN MEDIANTE MACHINE LEARNING Y RASPBERRY PI. INNOVACIÓN Y TECNOLOGÍA, 12(1), 20-33. RECUPERADO DE <a href="https://www.innovtecnologia.com/climatizacion-machine-learning-raspberry-pi">https://www.innovtecnologia.com/climatizacion-machine-learning-raspberry-pi</a>
- 6.THOMPSON, L. (2021). ENERGY-EFFICIENT CLIMATE CONTROL USING IOT DEVICES. JOURNAL OF SUSTAINABLE TECHNOLOGIES, 9(4), 78-90. RECUPERADO DE HTTPS://WWW.JOURNALSTS.COM/ENERGY-EFFICIENT-CLIMATE-IOT
- 7.MARTÍNEZ, F. (2020). DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN AUTÓNOMO BASADO EN RASPBERRY PI. TESIS DE GRADO, UNIVERSIDAD TECNOLÓGICA. RECUPERADO DE HTTPS://www.ut.edu/design-CLIMATE-SYSTEM-RASPBERRY-PI
- 8.BROWN, T., & GREEN, H. (2021). INTEGRATION OF IOT FOR SMART HOME CLIMATE SYSTEMS. SMART HOME JOURNAL, 14(2), 101-115. RECUPERADO DE HTTPS://WWW.SMARTHOMEJOURNAL.COM/IOT-CLIMATE-SYSTEMS
- 9. HERNÁNDEZ, P. (2020). CONTROL DE TEMPERATURA EN EDIFICIOS INTELIGENTES UTILIZANDO RASPBERRY PI. TECNOLOGÍA Y CIENCIA, 15(6), 120-130. RECUPERADO DE HTTPS://WWW.TECNOLOGIAYCIENCIA.COM/TEMP-CONTROL-BUILDINGS-RASPBERRY-PI
- 10. WILSON, J. (2022). PREDICTIVE ANALYTICS FOR CLIMATE CONTROL WITH RASPBERRY PI. JOURNAL OF PREDICTIVE MAINTENANCE, 6(1), 60-72. RECUPERADO DE <a href="https://www.jpredictivemaint.com/climate-control-analytics-raspberry-pi">https://www.jpredictivemaint.com/climate-control-analytics-raspberry-pi</a>