

SISTEMA DE CLIMATIZACIÓN AUTOMATIZADO

PROYECTO II

PROFESOR:
DIEGO ARACENA

INTEGRANTES:
ANGIE MARTINEZ
POLETTE MONTT
BASTIAN SUCSO

RESUMEN FASE PASADA

99 PROBLEMÁTICA

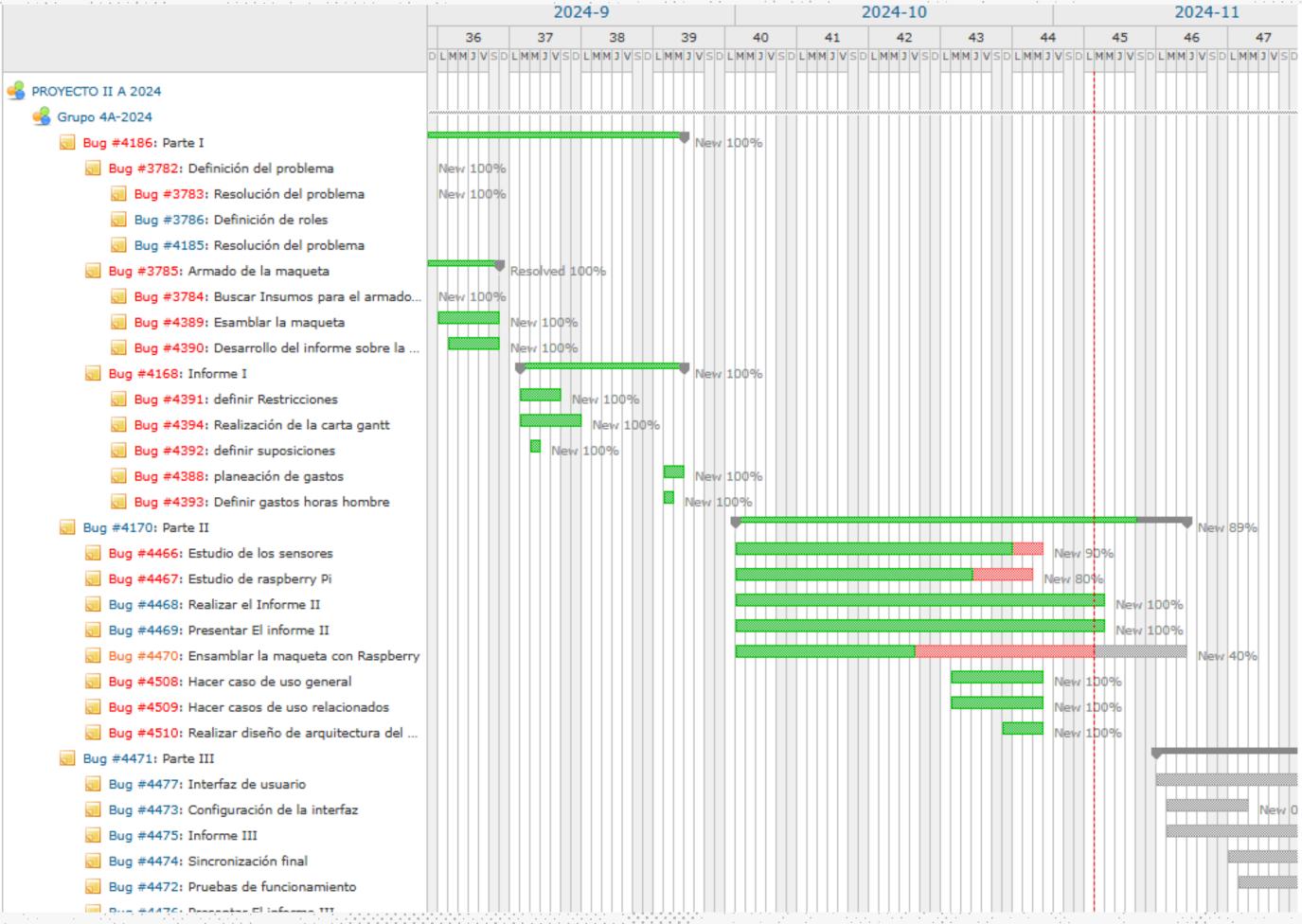
Una gestión ineficiente de la climatización puede generar condiciones interiores desfavorables. Esta situación impacta directamente en el bienestar de los habitantes y puede tornarse especialmente peligrosa en climas extremos, comprometiendo la salud y la seguridad, en particular de las personas más vulnerables.

OBJETVO GENERAL

Implementar un sistema de climatización automatizado utilizando una Raspberry Pi como controlador principal, que garantice un ambiente confortable.

OBJETVOS ESPECÍFICOS

1


Instalación de sensores: Utilizar sensores de temperatura para medir tanto el ambiente interno como externo.

2

Implementación de la Raspberry Pi 3

Interfaz de usuario: Crear una interfaz simple para que los usuarios puedan monitorear y ajustar parámetros del sistema

FASE II- CONSTRUCCIÓN

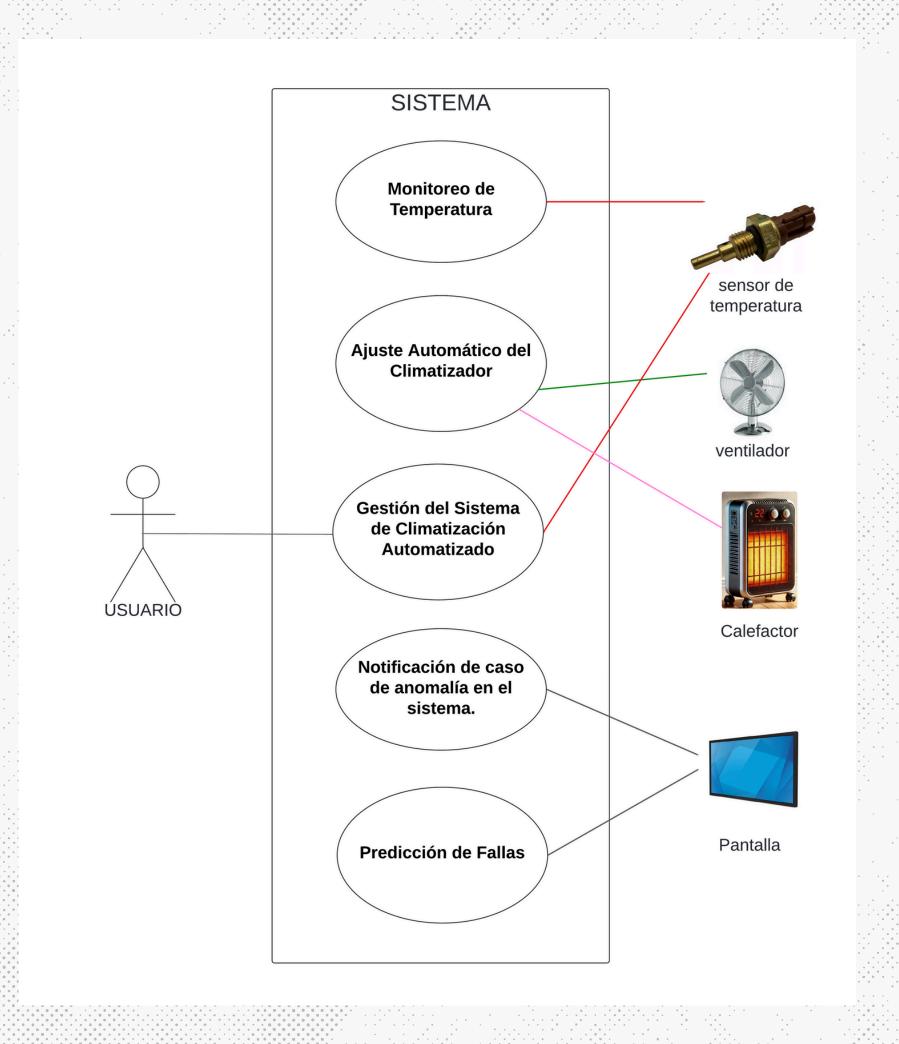
1 Requerimientos

2 Modelo de Diseño

3 Diseño de arquitectura

4 Interfaz Gráfica

REQUERIMIENTOS


FUNCIONALES

- Monitoreo de Temperatura:
- El sistema debe medir la temperatura interna y externa y mostrarla.
- Control de Climatización:
- Encender y apagar, ingresar un rango de temperatura interna, ajustar automáticamente la climatización y botón de "Guardar".
- Mantenimiento Predictivo
- Interfaz de Usuario

NO FUNCIONALES

- Rendimiento: Respuesta al mostrar las mediciones de temperatura y de detección de fallas.
- · Usabilidad.
- Confiabilidad: El sistema debe estar operativo al menos el 98%
- Seguridad: Los datos de transmisión y almacenamiento deben estar encriptados para garantizar la privacidad.

DIAGRAMA DE CASOS DE USO BASE

MODELO DE DISEÑO (CASO DE USO GENERAL)

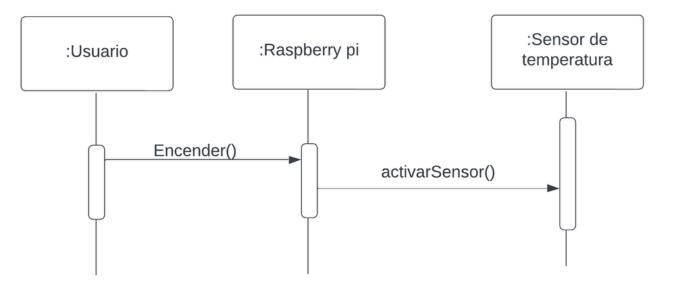
Nombre C	US: Gestión	del Sistema	de Climatizació	n Automatizado
----------	-------------	-------------	-----------------	----------------

Resumen: El sistema monitorea continuamente la temperatura interna y externa y ajusta automáticamente el climatizador. También permite la interacción del usuario para el encendido/apagado, configuración y obtención de datos de los estados de los dispositivos y el sistema.

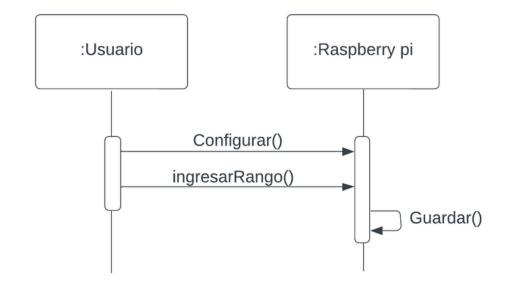
Actor: Usuario, Sensor de temperatura

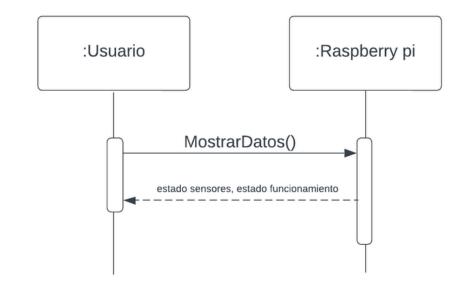
Eluia Principal: Sistema de climatización

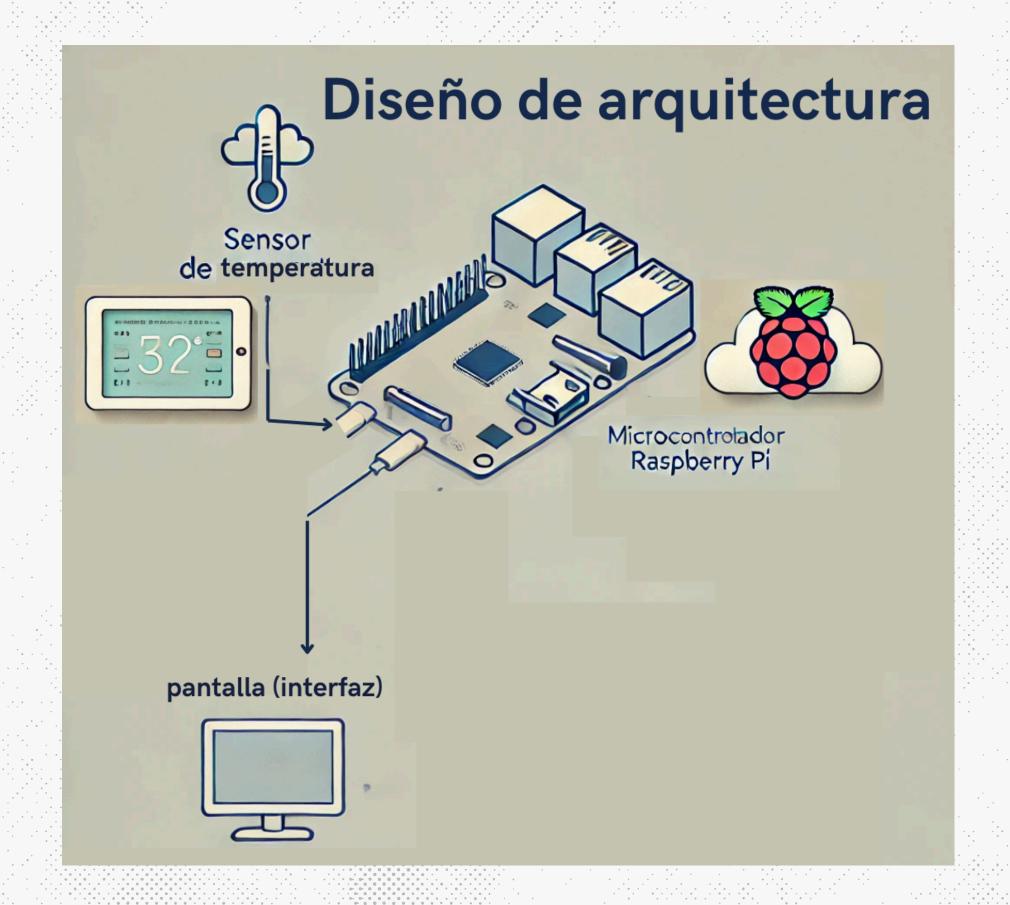
Postcondiciones: —


Precondición: Los sensores de temperatura están conectados y operativos. El sistema de climatización está en funcionamiento, y la Raspberry Piestá conectada y configurada.

Piujo Principai: Sistema de cilmatización 2. El usuario selecciona "Encender"	Flujo Principal: Sistema 1.El sistema muestra las siguientes opciones: • Encender/Apagar • Configurar Temperatura • Mostrar datos 3. El sistema activará los sensores
Flujo Alternativo: 2.1 El usuario selecciona "Configurar Temperatura" 4.1 El usuario ingresa el rango de temperatura	3.1 El sistema solicita ingresar el rango de temperatura adecuado 5.1 Guarda y actualiza la información.
Flujo Alternativo: 2.2 El usuario selecciona "Mostrar Datos	3.2 El sistema muestra un resumen de la información del sistema; estado


de los sensores; si el sistema funciona correctamente;


Gestión del Sistema de Climatización Automatizado "Encender"


Gestión del Sistema de Climatización Automatizado "Configurar"

Gestión del Sistema de Climatización Automatizado "Mostrar Datos"

DISENO DE ARQUIEGIBA

INTERFAZ GRÁFICA

COMPONENTES

Pantalla Principal:

- Resumen de estado.
- Gráfica de temperatura

Controles Manuales:

- Botón de encendido/apagado.
- Campo de rango de temperatura interna
- Botón de Guardar

Sección de Mantenimiento Predictivo:

• Indicador de estado del sistema:

CONCLUSIÓN

- LA IMPLEMENTACIÓN DE UN SISTEMA DE CLIMATIZACIÓN AUTOMATIZADO PERMITE OPTIMIZAR EL CONFORT EN INTERIORES Y EL CONSUMO ENERGÉTICO MEDIANTE EL USO DE TECNOLOGÍA COMO RASPBERRY PI.
- UNA INTERFAZ DE USUARIO ACCESIBLE Y FÁCIL DE USAR MEJORA SIGNIFICATIVAMENTE LA EXPERIENCIA DEL USUARIO FINAL, PERMITIENDO UN MONITOREO Y CONTROL INTUITIVO DEL SISTEMA.
- ESTE SISTEMA DEMUESTRA SER ADAPTABLE Y ESCALABLE, CON EL POTENCIAL DE INTEGRARSE EN DISTINTOS ENTORNOS RESIDENCIALES Y AJUSTARSE A DIVERSAS CONDICIONES CLIMÁTICAS.

REFERENCIAS

- 1.RUIZ, C. (2020). IMPLEMENTACIÓN DE SENSORES DE TEMPERATURA CON RASPBERRY PI PARA CONTROL DE CLIMATIZACIÓN. REVISTA ELECTRÓNICA DE TECNOLOGÍAS AVANZADAS, 5(2).

 HTTPS://WWW.RETAVANZADAS.COM/IMPLEMENTACION-SENSORES-RASPBERRY-PI-CLIMATIZACION
- 2.PÉREZ, A. (2021). USO DE SENSORES DE TEMPERATURA Y HUMEDAD PARA CONTROL INTELIGENTE DE CLIMATIZACIÓN CON RASPBERRY PI. ELECTRÓNICA Y HOGAR INTELIGENTE.

 HTTPS://www.electronicahogar.com/control-climatizacion-raspberry-pi
- 3.LÓPEZ, J. (2021, JULIO 12). MANTENIMIENTO PREDICTIVO EN SISTEMAS DE CLIMATIZACIÓN USANDO RASPBERRY PI. INGENIERÍA Y AUTOMATIZACIÓN.

 HTTPS://WWW.INGAUTOMATIZACION.COM/MANTENIMIENTO-PREDICTIVO-CLIMATIZACION-RASPBERRY
- 4.SMITH, K. (2019). ADVANCED TEMPERATURE CONTROL WITH RASPBERRY PI. INTERNATIONAL JOURNAL OF IOT APPLICATIONS, 7(3), 45-58. RECUPERADO DE https://www.ijota.com/advanced-temperature-control-raspberry-pi5
- 5.GONZÁLEZ, R. (2020). OPTIMIZACIÓN DE SISTEMAS DE CLIMATIZACIÓN MEDIANTE MACHINE LEARNING Y RASPBERRY PI. INNOVACIÓN Y TECNOLOGÍA, 12(1), 20-33. RECUPERADO DE https://www.innovtecnologia.com/climatizacion-machine-learning-raspberry-pi
- 6.THOMPSON, L. (2021). ENERGY-EFFICIENT CLIMATE CONTROL USING IOT DEVICES. JOURNAL OF SUSTAINABLE TECHNOLOGIES, 9(4), 78-90. RECUPERADO DE https://www.journalsts.com/energy-efficient-climate-iot
- 7.MARTÍNEZ, F. (2020). DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN AUTÓNOMO BASADO EN RASPBERRY PI. TESIS DE GRADO, UNIVERSIDAD TECNOLÓGICA. RECUPERADO DE https://www.ut.edu/design-climate-system-raspberry-pi
- 8.BROWN, T., & GREEN, H. (2021). INTEGRATION OF IOT FOR SMART HOME CLIMATE SYSTEMS. SMART HOME JOURNAL, 14(2), 101-115. RECUPERADO DE https://www.smarthomejournal.com/iot-climate-systems
- 9. HERNÁNDEZ, P. (2020). CONTROL DE TEMPERATURA EN EDIFICIOS INTELIGENTES UTILIZANDO RASPBERRY PI. TECNOLOGÍA Y CIENCIA, 15(6), 120-130. RECUPERADO DE https://www.tecnologiayciencia.com/temp-control-buildings-raspberry-pi
- 10. WILSON, J. (2022). PREDICTIVE ANALYTICS FOR CLIMATE CONTROL WITH RASPBERRY PI. JOURNAL OF PREDICTIVE MAINTENANCE, 6(1), 60-72. RECUPERADO DE https://www.jpredictivemaint.com/climate-control-analytics-raspberry-pi