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Abstract Improper functioning, or lack, of human cone
cells leads to vision defects, making it impossible for
affected persons to distinguish certain colors. Colorblind
persons have color perception, but their ability to
capture color information differs from that of normal
people: colorblind and normal people perceive the same
image differently. It is necessary to devise solutions
to help persons with color blindness understand images
and distinguish different colors. Most research on
this subject is aimed at adjusting insensitive colors,
enabling colorblind persons to better capture color
information, but ignores the attention paid by colorblind
persons to the salient areas of images. The areas of
the image seen as salient by normal people generally
differ from those seen by the colorblind. To provide
the same saliency for colorblind persons and normal
people, we propose a saliency-based image correction
algorithm for color blindness. Adjusted colors in the
adjusted image are harmonious and realistic, and the
method is practical. Our experimental results show that
this method effectively improves images, enabling the
colorblind to see the same salient areas as normal people.

Keywords color vision; colorblindness; saliency; color
correction

1 Introduction
With the development of printing and screen display
technology, color has become an important means
of information exchange in people’s daily life.
Information exchange through color is convenient
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for ordinary people but is more of a challenge for
those with color vision defects (CVD). CVD can
cause various changes in color perception, from
slight shadows to severely indistinguishable colors.
CVD are of three main kinds: red-green color
blindness, blue-yellow color blindness, and complete
color blindness. Most CVD are congenital, affecting
approximately one in every 40,000 newborn babies.
However, these defects may also be caused by
abnormal development of cone cells in the retina,
or external damage. Currently, there are at least 200
million persons worldwide with dichromatic CVD, of
which approximately 3.5% are school students. The
prevalence of generalized CVD is even more difficult
to assess. CVD are easily overlooked because many
people think that these problems are not serious.
However, most types of color blindness make it very
difficult to distinguish, e.g., changes in traffic lights,
which is very dangerous. Many other areas can be
affected by these defects, such as the ability to read
traffic signs and maps. To ensure the wellbeing and
safety of colorblind persons, the problem of color
blindness should not be ignored.
Solutions to the problem of CVD are of two main

kinds: treatment of the person, and augmentation
of images. Regarding the treatment of persons with
CVD, certain physical therapies are generally used
to reduce the effects of CVD and complications, but
CVD often cannot be cured. For example, in one type
of advanced treatment, a red light is used to stimulate
the color perception of the cone cells. However, the
success rate of this treatment is only 35%. Image-
based CVD solutions start outside the human body,
processing images by computer and presenting the
results to the colorblind person. Such methods avoid
pain for the person and have high feasibility.
There are many methods for overcoming CVD

based on images. In color scheme adjustment [1–3],
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brightness differences can be used to realize automatic
color conversion. Ref. [4] used an ordinary
stereo display (non-autostereo display) to provide
colorblind persons and ordinary users with two visual
experiences, so that CVD and normal vision viewers
can share the same content. A wearable vision
improvement system [5] can enhance a person’s
Ishihara vision test score with enhanced mechanical
equipment and a head-mounted display. Color filters
[6] have been used for auxiliary color recognition for
the colorblind, moving color filters [7–9] in front of the
person’s eyes to achieve rapid conversion between film
observation and naked eye observation. For example,
if you move the green film, the green color is not
affected, but the red transmittance is reduced, which
forms a region where the brightness continuously
changes, helping the colorblind person to discriminate
colors. Another static filter [10] converts the diffuse
state of the color into an identifiable state. A more
advanced method [11] uses a Heilmeier-type liquid
crystal device to control the transmittance of green
light by changing the voltage to achieve synchronous
flashing of green objects.
An auxiliary color filter device transmits different

colors through a film, thereby forming a color
difference, but this method is only used for a certain
colorblind tube, and different standards are required
for different types of color blindness. It may not be

usable in all cases. Wearable visual improvement
technology is effective in improving the vision of
persons with color vision defects, but the need to
carry and wear the necessary equipment may be
inconvenient.
People pay attention to the salient regions when

looking at an image, helping them to quickly
understand the information in the image. Because
of lack of correct cone cell function, the color
distribution in a image seen by the colorblind and
normal people are different. Vivid colors for standard
vision may no longer be vivid in the eyes of the
colorblind. When normal and colorblind people see
the same image, the color distribution in the image
appears differently to them, so the salient regions
may differ. To overcome this issue, and to achieve the
same perception from colorblind and normal viewers,
this paper proposes an approach which determines
a salient region under normal vision and uses a
simulated colorblind image to correct the salient
region of the image as viewed by a colorblind person.
See Fig. 1.
The main contributions of our method are as

follows:
• We determine the salient region of an image under

normal vision, and use it to correct the salient
region of a simulation of an image as seen by a
colorblind subject.

Fig. 1 Saliency detection results after CVD simulation, for a standard image (a, b, c), and a corrected image (d, e, f), compared to saliency
with normal vision (g).
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• We retain the original color of the image to
highlight the salient area. Adjusted colors in
the adjusted image are harmonious and realistic,
and the method is practical.

2 Related work
2.1 Color vision defects
Human color perception is based on three light-
sensitive pigments [12, 13] and may be represented
by a three-dimensional value, the power of each
wavelength specifying the degree of the color stimulus.
Trichromatic accuracy is determined by three types
of light-sensitive pigment cells (L-, M-, and S-cones)
in the retina. Different wavelengths of light stimulate
the receptors differently. For example, yellow-green
light stimulates L-cones and M-cones to the same
degree, but only weakly stimulates S-cones. The
human visual system combines information from
various cone cells in response to light of different
wavelengths. When any kind of cone cell is destroyed
or loses function [14], color vision defects occur.
CVD can be divided into color blindness and

color weakness, and described as trichromacy
(color weakness), bichromacy (color blindness), or
monochromacy (full-color blindness). Persons with
full-color blindness have lost functionality of two or
three kinds of cone-cell and can perceive the intensity
of light [15] but cannot distinguish colors; they see
the world in black and white. Certain colorblind
persons with bichromacy have lost red, green, or blue
cone functions. Certain persons with trichromacy
have functioning cones of all three kinds, but one of
the photosensitivity spectra is shifted, thus causing a
deviation in color perception.

2.2 Color vision defects simulation
Colorblind persons have color perception, but the
abilities of these persons to capture color information
differ from those of normal people, as shown in
Fig. 2. Images can be adjusted so that people with
CVD can better understand them. Image-based
color vision defect-assisted processing requires CVD
simulation; previous researchers have conducted many
studies on simulated chromatic aberration [16, 17].
Brettel [16] proposed a method of simulating red-
green blindness. According to the responses of three
types of light-sensitive pigments cells, RGB color is
represented as a vector in LMS color space. However,

the algorithm makes many assumptions, and its
applicability is limited. According to the theory of
human color vision, MacHado et al. [18] simulated
color through electrophysiology and handled normal
color perception, trichromatic vision, and two-color
vision. Chen et al. [19] devised a method to derive
mapping relationships between images as seen by the
colorblind and normal images to ensure that contrast
is provided between each pair of representative
colors. Okajima and Kanbe [20] improved brightness
differences by defining a model based on personal
color vision. Flat and Gutwin [21] considered all
factors affecting vision and proposed a case-specific
color difference model. Kuhn et al. [22] proposed an
efficient and automatic two-color image recoloring
technique that highlights important visual details. In
addition, there are ready-made applications such as
ColorDoctor.
Unlike the research of these previous investigators,

this paper uses a deep convolutional neural network
method to convert a normal image into a “colorblind
image”, i.e., a simulation of an image as experienced
by a colorblind person. Normal images are input into
the convolutional neural network. Colorblind images
are used for training so that the generator generates
near-real colorblind images.

2.3 Saliency detection
With the development of digital cameras and smart
phones, the number of images has exploded. Saliency
detection finds the area in a complex image that
attracts attention, allowing a viewer to quickly
determine the content of the image. The purpose of
salient object detection methods is to highlight salient
areas in an image and their development is relatively
recent. Initially, non-deep learning models based on
low-level features [23–25] relied on features such as
image color contrast [26]. In order to obtain prominent
objects with clear boundaries, methods such as
superpixels [27] were usually also incorporated into the
model. A more detailed overview is given in Ref. [28].
Since 2015, methods based on deep learning have
emerged, from earlier saliency score processing units
that extract features based on multilayer perceptron
(MLP) classifiers [29, 30], to salient object detection
architectures based on fully convolutional networks
(FCN) [31–33]. In addition, salient object detection
methods may refine the detected salient objects into
individual instances [34, 35].
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In addition to research on static scenes, salient
object detection in dynamic scenes has also flourished:
e.g., Ref. [36] has contributed to research on
video saliency. Salient object detection can not
only detect salient objects, but also has a wide
range of applications, including unsupervised video
object segmentation [37], semantic segmentation
[38, 39], automatic image cropping [40], image target
retargeting [41], and other fields.
In this paper, saliency detection is performed to find

the salient area. Traditional contrast-based object
detection methods have limitations, overemphasizing
the edges of the salient object without uniformly
distributing saliency across the salient object. When
the current experience is similar to the background,
saliency detection errors arise. In order to alleviate
these problems, this paper adopts a diffusion-based
method [42], using the diffusion matrix and seed
vector for salient area detection.

2.4 Saliency-based image processing
When we take a photo on a mobile phone, we
sometimes find that an unimportant object is too
prominent, distracting from the original intent. Faced
with this kind of problem, we may wish to take
another shot or fix the photo later. However, it is
complicated to enhance specific objects in a photo
using an image editor. It is necessary to consider the
exposures of specific objects, reduce the background
exposure, and increase saturation and background
blur. For those lacking basic knowledge of color

Fig. 2 Top: color spectrum as seen with normal vision. Next 6 rows:
the three main types of color blindness paired with their less severe
versions. Bottom: monochromatic vision.

matching, this method is difficult. To solve this
problem, we can learn the parameters of an image
using a network and adjust the contrast of the target
area, and other image parameters. This approach
of improving the apparent contrast of an object by
manipulating the color of the image is called attention
redirection [43, 44]. In addition to enhancing salience,
object enhancement can be achieved through this
idea [45], guiding viewers to pay attention to mixed
reality [46] and color redirection [47] or augmenting
images by removing the background [48], emphasizing
the background [49], or changing image aesthetics
[50]. Through attention-focused operations, objects
of interest are made more prominent, and it is
easier for people with color defects to find prominent
objects.
The goal of attention redirection is to select the

target area and correct this area to achieve target
enhancement. Various methods are compared in
Ref. [43]. Certain methods enhance objects in such
a way that the enhanced color is unrealistic, e.g.,
resulting in a purple apple or a blue snake. Another
patch-based approach [51] replaces patches in the
target area with other patches from the same image.
This replacement is not simple patch exchange. Based
on the saliency of the image, an appropriate patch
is selected for replacement, thereby enhancing the
target area of the image to achieve a significant
effect.

3 Colorblind images
3.1 Colorblind image correction
Currently, there is no effective treatment for color
blindness. In recent years, with the development
of technology, various colorblind image re-coloring
algorithms have appeared, providing color correction
for colorblind images. Because of the defects in
cone cells of colorblind persons, some colors are
unrecognizable, so the main purpose of colorblind
color correction is to help colorblind persons
distinguish certain colors, rather than helping
colorblind persons recognize certain colors. In order
to do so, increasing the color contrast between
different colors is the main approach to colorblind
image correction.
These methods may be mainly divided into four

categories: LMS space conversion, colorblind filters,
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Lab color correction, and shifting color algorithms.
LMS space conversion is a more comprehensive
method which converts the image from RGB space
to LMS space, processes the image in LMS space,
and re-converts the processed image to RGB space.
The CBFS algorithm compares the color of each
pixel in the image with red or green, and processes
the approximately red or green pixels, so that a
colorblind person can better perceive the image. This
correction algorithm is aimed at protanopia. Lab
color correction converts RGB images into Lab space,
and modifies the sensitive red or green color for
green blind persons, thus achieving color correction
of colorblind images. This method only corrects for
deuteranopia. The shifting color method is aimed at
tritanopia. It converts the image to Lab space, adjusts
the image brightness, and then adjusts and converts
back to RGB color space to achieve color correction.
The above methods have various problems, such as

unnatural coloring, artifacts in coloring results, and
slowness. Huang et al. [52] proposed a more efficient
image re-coloring algorithm. A Gaussian mixture
model (GMM) is used to represent color information.
Extracted key colors are weighted to take into account
the sensitivity of colorblind persons to different colors.
During interpolation, color is interpolated according
to the posterior probability of the Gaussian and the
corresponding map, thereby ensuring smoothness of
local colors in the image after re-coloring, effectively
reducing artifacts.

3.2 Colorblind image saliency detection
Because of the defects in cone function, colorblind
persons are unable to recognize or distinguish certain
colors. When a normal and a colorblind person see
the same image, the former is attracted to bright red,
while the latter’s attention is concentrated in other
areas. If they discuss this image, they concentrate on
different aspects.
For most color images, the color seen by CVD

persons differs from that of normal people. Both the
vividness of the color will be greatly reduced, and the
information transmitted by the image itself will also
change. Figure 3 shows that after converting a color
image to a colorblind image, the salient area of the
image changes. Originally it had bright orange petals
and green leaves, but after CVD simulation, the petal
color and leaf color changed, becoming similar. The
resulting saliency detection may be deficient, with
the significant area seen by a colorblind person being
different that seen by a normal person. To the main
purpose of the algorithm in this paper is to overcome
this problem, so that colorblind persons and normal
people may focus on common salient areas.

4 Proposed method
Persons with CVD cannot recognize certain colors
due to deficiencies in the three kinds of light-sensitive
pigment cells. We first use a CVD model to perform
CVD simulation (Section 4.1), perform saliency

Fig. 3 Examples of saliency detection in standard images, red-blind simulated images, and green-blind images.
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detection on the standard image (Section 4.2), then
use the saliency map to perform saliency correction
on the colorblind image (Section 4.3), and finally
inversely transform the corrected colorblind image
into a standard color image (Section 4.4). The goal
is that both persons with CVD and normal persons
should pay attention to the same salient area in the
corrected image. The algorithm pipeline is shown in
Fig. 4.

4.1 Colorblind image simulation
Tanuwidjaja et al. [5] proposed a wearable augmented
reality system based on Google Glass. For each
color, the RGB color space is converted into LMS
space. Using Eq. (1), the converted chromaticity
automatically adapts to the scene viewed according
to the type of color blindness. There are special
algorithms for reproducing color. Chroma’s wearable
augmented reality device is an effective digital
accessory that enhances vision in everyday activities
to help colorblind persons recognize different colors.⎡

⎢⎣
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⎤
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Machado et al. [18] proposed a physiological

model for simulating color perception based on
electrophysiological research report: human color
vision can be simulated to achieve normal color vision,
abnormal trichromatic vision, and dichroic vision. This
method simulates a colorblind image using Eq. (2):⎡

⎢⎣
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Gs
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⎤
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where Γ consists of the basic color sets WS(λ), YB(λ),
RG(λ).
Lin et al. [53] convert an RGB image to λ, Y-B,

R-G color space via LMS space, using the CIECAM02
model, as below:⎡
⎢⎢⎣

λ

Y-B
R-G

⎤
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⎡
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⎢⎣

R

G

B

⎤
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However, there is a certain amount of distortion
in this method, and a method of recoloring the
colorblind image is proposed.
The λ, Y-B, R-G spatial images are subjected to

CVD simulation to obtain a difference image, the
feature vector is extracted from the simulated image,
and the color of the image after CVD simulation is

Fig. 4 Pipeline of our proposed saliency-based image correction algorithm for colorblind persons.
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altered so that a CVD person can perceive the color
information better.
The simulated colorblind image can also be

inversely transformed into an RGB image, using⎡
⎢⎣

R

G

B

⎤
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⎡
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⎤
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⎡
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λ
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⎤
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(4)

Color constraints are added to minimize the
distortion caused by spatial transformation, and the
altered color is converted from λ, Y-B, R-G space to
RGB space [53], to achieve recoloring.
The aim during color transformation is to preserve

color information in the original image as much as
possible so that the recolored image is as natural as
possible, and the whole image is harmonious in color.
When recoloring colorblind images, most methods
are based on experimental criteria. The designer
uses a color scheme to reduce the limited CVD color
palette. However extensive effort is still necessary to
choose a color that is visually friendly to the CVD
viewer. Moreover, these methods cannot be applied to
existing natural images. Semiautomatic restoration
of the image to accommodate color blindness provides
the user with certain parameters to adjust the color
map. However, the results are sensitive to the choice
of parameters, and inappropriate parameters can
cause the images to look unnatural.

4.2 Saliency map
First, we abstract the image to obtain a super-pixel
form of the image. Each pixel can be regarded
as a node Vi in a graph G. The weight of edge
eij linking adjacent nodes Vi and Vj is used to

represent the relationship between the nodes, where
the node represents attributes in the image. The
k-means algorithm is used to cluster the super-pixels,
and the foreground and background are obtained
from the tightness of the cluster. The saliency
map is calculated according to the foreground and
background seeds obtained, and then all saliency
maps are obtained by the diffusion method. The
calculated foreground is integrated with the super-
pixel saliency map of the background to produce a
super-pixel-level saliency map.
Using the diffusion method, a sparse graph is

constructed from the graph nodes and the neighbors
of each node. After considering neighboring nodes,
the largest common edge of the node is included in the
statistical range. In this method, a two-layer sparse
graph is constructed that effectively uses local spatial
relationships in the image and removes redundant
nodes as much as possible. We use the edge weight
to represent the relationships between the nodes, as
below:

wij =
{

e−‖li−lj‖2/σ2
, vi and vj are connected

0, otherwise
(5)

After transforming from RGB color space to Lab
space, li and lj represent the super-pixel means of
the corresponding nodes vi and vj , and σ is the trade-
off parameter.
The nodes in the super-pixel are clustered into k

classes by the k-means algorithm with cluster centers
C = |c1, · · · , ck|. For each cluster, the similarity
between nodes and clusters is determined using the
method of popularity ranking [55]:

H = (D − αW )−1A (6)

Fig. 5 (a) Convolutional neural network framework. (b) Structure of the generator.
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where A indicates the similarity between vi and ci, W

is the weight set for each side, D represents the sum
of the weights on all node branches, H = [hij ]N×K is
the similarity matrix after the diffusion process, and
α is a constant.
Using the similarity between nodes and clusters,

the significance of nodes in the region is determined
according to their probability; they are divided into
significant nodes and background nodes. The salient
node-set and the background node-set are called
FG and BG, respectively. The nodes in FG form
a saliency map according to

sFG(i) =
N∑

j=1
q(i, j)(D − αW )−1

∑
cj∈FG

p(j)aij (7)

where q(i, j) is the normalization of the node weights,
and p(j) is the probability that vj is a salient node.
The formula shows that as the node weight wij

connected to the super-pixel node vi becomes larger,
or djj for pixel vj becomes larger, the larger q(i, j)
becomes, and the greater the probability that vj is a
salient node.
Referring to the saliency map construction method

for the salient region, the saliency map for the
background node is formed by

SBG = (D − αW )−1
∏

cj∈BG
(1 − aij) (8)

The diffusion process for salient and background
nodes ends, forming a super-pixel saliency cluster and
a background cluster. These parameters are SFG and
SBG, respectively, and the two parts complement each
other to form a saliency map for the entire image.

4.3 Saliency driven color correction
To perform color correction in a region, we adjust the
significant contrast of the target area to the rest of the
image. We replace the patch block of the target area
with the patch block outside the target area. The
corrected image J is generated by inputting the target
area mask R and the green blind image I, and the
saliency contrast ΔS. The saliency of J is represented
by SJ . First, we select two patch datasets of size
n × n in the input image. The patches are classified
into significant patches D+ = {q;SI(q) � τ+} and
background patches D− = {q;SI(q) � τ−} where
τ−, τ+ is a threshold. The patch is manipulated by
defining an energy function to enhance the significant
patches, and the background patches are weakened.
The energy function is defined as

E
(
J, D+, D−)

= E+ + E− + λ · E∇ (9)

E+ (
J, D+)

=
∑
q∈R

minp∈D+D(q, p)

E− (
J, D−)

=
∑
q /∈R

minp∈D−D(q, p)

E∇(J, I) = ∇J − ∇I2

where D(q, p) is the sum of the squared distances
between the patches q, p in Lab color space, E∇ is
the gradient of the original image I, and λ is used to
weight the Lab color space and the original image.
To obtain a colorblind image I with saliency

contrast SJ , Eq. (9) is minimized so that the more
prominent the patch in R is, the less significant the
area outside R is. Therefore, by defining
ψ (SJ , R) = mean

βtop
{SJ ∈ R} − mean

βtop
{SJ /∈ R} (10)

where βtop = 20%, the function can calculate the
difference in saliency between the pixels in the target
region R and the external pixels and further obtain
the minimized energy term based on the saliency:

Emin =‖ ψ (SJ , R) − ΔS ‖ (11)
Through greedy search, the patch library is
continuously updated, as is the threshold, thereby
updating the entire image and realizing color
correction and thus enhancement of the salient region
of the colorblind image. Experimental results are
shown in Figs. 6(a) and 6(e).

4.4 Inverse transformation
The method in Section 4.3 achieves saliency correction
of colorblind images, but our ultimate goal is to
obtain a saliency corrected standard color image.
Therefore, the corrected colorblind image must be
inversely transformed into a standard color image.

Fig. 6 Colorblind image correction. (a) Effect of enhancing green
blindness; (e) effect of enhancing red blindness; (b, f): (a, e) converted
to standard color images, respectively; (c, g) colorblind simulated
images of (b, f), respectively; (d, h) saliency maps of (c, g), respectively.
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Conversion between normal and colorblind images is a
visual problem that can be addressed by convolutional
neural networks. For example, Ref. [56] used a
generative adversarial network to generate realistic
shadows for a source object. Unlike in traditional
methods, we determine the mapping relationship
between two different kinds of images through the
network to perform conversion of colorblind images
to color images.
Since the problem is an image-to-image conversion

problem, the convolutional neural network is trained
with the idea of confronting the network. We assume
that the normal image is the X domain and the
colorblind image is the Y domain. Our target is Gyx :
Y → X. A colorblind image is input to the network,
and a standard color image corresponding to the
image is output. As shown in Fig. 5(a), the network
is divided into two branches. In order to facilitate
unified training, a cyclic consistent loss function [54]
is used to connect the two branches into a large cyclic
network.
The CycleGAN structure model performs

unsupervised image style transfer, using a relatively
simple network structure. The generator and
discriminator are unchanged in structure. In this
paper, in order to enable the generator to learn more
deep features, we use a combination of up-sampling,
a residual block, and down-sampling: see Fig. 5(b).
Due to the fast convergence and strong feature
extraction capability of the residual network, high
quality images are generated. The generator uses
two down-sampling convolutional layers with a step
size of 2, six residual blocks, and two up-sampling
convolutional layers with a step size of 1/2. Training
takes 200 epochs.
In this network, the forward loop network and

the backward loop network are trained using the
same loss function by using a cycle consistency loss
function in two separate countermeasure networks.
The training goal for the discriminator for a
single generator in the forward network is to
make the image generated by the generator as
unrecognizable as possible to the discriminator,
thereby maximizing the discriminator. The forward
loss is minGxymaxDy LGAN (Gxy, Dy, X, Y ), the loss
function corresponding to the backward network is
minGyxmaxDxLGAN (Gyx, Dx, X, Y ), and the cycle
consistency loss function is

Lcyc(Gxy, Gyx) = Ex∼pdata(x)
[‖ Gyx(Y ) − x ‖2]

+Ey∼pdata(y)
[‖ Gxy(X) − y ‖2]

(12)
where E(∗) denoted expected value, pdata(x) is the
target distribution of the X domain, and pdata(y) is
the target distribution of the Y domain.
The forward network loss function, the backward

network loss function, and the cycle consistency loss
function are accumulated in three parts. The overall
loss function of the network is given by

L (Gxy, Gyx, Dx, Dy) = LGAN (Gxy, DY , X, Y )
+LGAN (Gyx, DX , X, Y ) + λLcyc (Gxy, Gyx)

(13)
where λ = 10 is a trade-off parameter.
The training goal of the network is
argminGxy,Gyx maxDx,Dy L (Gxy, Gyx, Dx, Dy).
In Fig. 5, the corrected colorblind image is regarded

as a Y domain, input into the network, and a
corrected standard color image is output. In the
backward network, the Y domain image is the input,
and Y → Gyx → Gyx(Y ) → Gxy → y ≈ Y , thereby
realizing conversion of the colorblind image to a
normal image: see Figs. 6(b) and 6(f). This completes
saliency correction of the colorblind image.
The overall method flow is given in Algorithm 1.

5 Experiments
In order to prove the effectiveness of the proposed
method, images processed by our method are
compared to unprocessed images. Test images
contain flowers, fruit, pedestrians, and natural
scenery. Figure 7 shows saliency driven image
correction for deuteranopia, while Fig. 8 shows
saliency driven image correction for protanopia.
The subfigures in Fig. 7 are referred to as 1–15,
while subfigures in Fig. 8 are referred to as 16–30.
Columns from left to right are the original image,
saliency detection results for the original image, the
colorblind simulation image, the saliency detection
result for the colorblind images, the colorblind images
with significant area enhancement, the inversely
transformed saliency enhanced colorblind images
(back to standard color), colorblind simulations of
the restored color images, and significance detection
in that inversely transformed image.
Our experimental results show that after converting

a color image into a colorblind image, the salient



178 J. Li, X. Feng, H. Fan

Algorithm 1 Saliency-based image correction for color blindness
Input: Normal color image Inorm and CVD simulation image of normal image I

1. Input: Image Inorm, Image I, and saliency contrast ΔS

2. Output: Manipulated and corrected image E

3. Initialize Inorm = (V, E),V = {vi|1 � i � N},E = {eij |1 � i, j � N},τ+, τ−

4. if p(j) > ε then
5. p(j) ∈ F G

6. else
7. p(j) ∈ BG

8. Make a saliency map of the salient nodes and the background nodes according to Eqs. (7) and (8)
9. Object mask R = Norm(Sfg + Sbg)
10. while ‖ ψ (SJ , R) − ΔS ‖> ε∗ do
11. (i) Update patch library
12. Increase τ+ and τ− decrease
13. (ii) Image update
14. Minimize Eq. (9)
15. end while
16. Fine-scale refinement
17. When τ+ and τ− no longer change, the iteration ends, and a color-corrected colorblind image J is obtained.
18. J inversely transforms a colorblind image into a color image E through a convolutional neural network.
∗Norm(·) is a function that normalizes its argument to a range of 0 to 1.

region of the image may move, or the size of the
salient region may be reduced, making the salient
region less noticeable. Our algorithm performs color
correction on the salient region of the image to help
colorblind persons to better perceive the image and
understand the information conveyed by the image.
Unlike traditional color correction algorithms,

the focus of this paper is not to correct the
colorblind image as a whole, but to focus on color
correction of the salient region of the image, so
that colorblind persons and normal people share
a common salient region. Traditional colorblind
color correction algorithms mainly adjust those colors
that colorblind persons cannot distinguish. Colors
in the the adjusted image are more vivid and the
contrast is more obvious, which effectively helps
colorblind persons to distinguish colors. But can
color correction algorithms help colorblind persons
to better understand images and capture the salient
region of images?
To answer this question, we compare our method

with the color correction algorithm proposed by
Huang et al. [52]. Experimental results are shown in
Fig. 9 (for green blind images) and Fig. 10 (for red
blind images). Columns from left to right show: the
original image, the salient area of the original image,
the color corrected image using our method, the
CVD simulation image corresponding to the corrected

image, the saliency map for the CVD simulation,
color corrected image using Huang’s algorithm, its
CVD simulation image, and its corresponding saliency
map. Comparing the second and fourth columns
in Figs. 9 and 10, it can be seen that the color
correction algorithm can help persons with color
vision defects to effectively distinguish colors, but
the conventional color correction algorithm cannot
provide comprehensive perception of the image for
colorblind persons.

5.1 Qualitative analysis

The experimental results provide qualitative
comparisons for different kinds of images. In the
experiment, after the original images were subjected
to CVD simulation, the vivid color information in
the original images was lost to varying degrees. For
example, red and green turned gray or grayish-brown
under the vision of a colorblind person. Therefore,
for normally visually bright colors, colorblind persons
severely lose color information, and objects become
less noticeable. In this case, the colorblind person
misjudges the true salient area. A comparison
between the second and fourth columns of Figs. 7
and 8 confirms this notion.
In this paper, saliency-based correction of

colorblind images is achieved using the salient region
of the original image and the colorblind image for
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Fig. 7 Some examples of saliency-driven image correction for deuteranopia image.



180 J. Li, X. Feng, H. Fan

Fig. 8 Some examples of saliency-driven image correction for protanopia image.
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Fig. 9 For the deuteranopia image, compare our method with Huang’s color correction algorithm.
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Fig. 10 For the protanopia image, compare our method with Huang’s color correction algorithm.



Saliency-based image correction for colorblind patients 183

saliency, to obtain a corrected salient region, as in
the fifth columns of Figs. 7 and 8. The corrected
color strongly contrasts with the color of the rest of
the image and is significantly more notable. However,
this corrected color depends on the entire image. It is
uncontrollable, and the color of the corrected portion
does not match the hues of the rest of the image and is
unrealistic. Therefore, the color-corrected colorblind
image is inversely transformed into a color image.
Since the correction of the salient area color is

based on the overall color of the image, if color
correction is performed directly on the original image,
the corrected color may still be color-insensitive red,
so color correction has no effect. In order to avoid
this phenomenon, color correction is performed on
the colorblind image, and the corrected colorblind
image is inversely transformed into a normal color
image. The sixth columns of Figs. 9 and 10 show
the effect of color correction directly on the original
image. The color-corrected image has problems such
as incomplete coloring and artifacts. The color-
corrected image is subjected to CVD simulation, and
the simulated result is significantly detected; the
detection result differs largely from the real image.
Comparing the second and eighth columns of

the experimental results shows that the salient
regions are basically consistent, demonstrating the
effectiveness of our method. For images with blurred
image boundaries and backgrounds, after colorblind
simulation, the salient area and the background area
are more difficult to distinguish. For colorblind
persons, the salient area cannot be correctly identified.
The saliency-driven color correction method proposed
in this paper is resimulated. The colorblind image
is compared with the colorblind simulation image
of the original image. As shown in Fig. 7 and the
third and seventh columns of Fig. 8, the salient areas
have changed to different degrees, making the areas
more obvious and original. In comparison to the
CVD simulation results (see the fourth and eighth
columns of Figs. 7 and 8) the proposed method
rediscovers the significant area that was originally
ignored, making the colorblind image saliency test
result more accurate.

5.2 Quantitative analysis
5.2.1 Error
The root means square (RMS) is used to measure
the difference between the two images, and the

significance of the experimental results is evaluated
to measure the deviation between the observed value
and the true value. RMS is defined by

RMS =
1
N

√√√√1
2

N∑
i=1

(ai − bi)2 (14)

where a represents the value in the experimental
result image and b represents the actual value in the
image.
Images in Figs. 7 and 8 are numbered 1–15 and

16–30, respectively. RMS and mean absolute error
results are shown in Table 1 for our method and
for the original image subject to CVD simulation.
Table 2 compares our algorithm with the traditional
color correction algorithm.
The RMS data in Tables 1 and 2 are analyzed

in Fig. 11: the lower the RMS value, the closer
the detected saliency map is to the original image,
indicating that the detection result is more accurate.
The left graph in Fig. 11 gives RMS results for the
deuteranopia image. The RMS values for the proposed
method are lowest, followed by the colorblind color
correction method. The RMS values of the directly
simulated CVD image are higher, and the detected
saliency map differs significantly from the original
image. On the right are the corresponding results for
the protanopia image. The traditional color correction
method improves perception for the colorblind person,
but does not achieve satisfactory results.
The MAE data in Tables 1 and 2 are analyzed

in Fig. 12. On the left is the RMS result for the
deuteranopia image. The MAE value for our method is
lower and its distribution is relatively stable. Huang’s
method has large fluctuations and is unstable. Errors
for the direct CVD simulation image are high. On the
right are corresponding results for the protanopia image.

5.2.2 PR curve and F-measure
To evaluate the salient regions detected by our
methods herein, a P–R curve is used. P (precision)
represents the accuracy, the ratio of correctly
detected significant pixels to all pixels. R (recall)
represents the ratio of detected salient pixels to
true salient pixels. The gray images output in this
paper are classified according to 0–255, and a total
of 256 recall pairs are used to draw the PR curves.
Results are shown in Fig. 13; (a) and (c) compare
the method proposed in this paper with the direct
CVD simulation method, while (b) and (d) compare it
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Table 1 Quantitative analysis of saliency detection results for the CVD simulation images and the corrected images

Deuteranopia Protanopia

Image Our-RMS Our-MAE CVD-RMS CVD-MAE Image Our-RMS Our-MAE CVD-RMS CVD-MAE
1 0.0701 0.2991 2.5694 0.5823 16 2.8648 0.1925 5.5191 0.6193
2 0.3081 0.1625 3.3922 0.6871 17 3.2691 0.3374 9.7282 0.5346
3 0.3117 0.1246 1.9242 0.7855 18 3.6777 0.3253 12.677 0.6797
4 0.1136 0.2506 8.7327 0.5696 19 0.6037 0.1301 1.6286 0.8348
5 3.5325 0.1651 7.6449 0.6851 20 1.4167 0.1812 8.6293 0.7598
6 1.1658 0.1162 5.9658 0.6233 21 0.9317 0.1260 2.1385 0.7760
7 0.1567 0.1033 2.3634 0.6033 22 2.4786 0.3543 4.8342 0.5932
8 1.5694 0.3243 5.2705 0.8243 23 0.8345 0.1563 4.5279 0.7016
9 2.3046 0.2006 5.0973 0.8982 24 2.2174 0.2186 14.3605 0.8564

10 3.9658 0.2105 6.7297 0.8687 25 2.4323 0.3217 3.9038 0.7294
11 3.3682 0.1643 5.1742 0.7943 26 0.6556 0.4426 3.2132 0.8262
12 1.1553 0.1984 1.5819 0.8369 27 0.1689 0.1044 4.6819 0.7104
13 1.3607 0.2004 6.3781 0.7073 28 2.1435 0.3132 7.0159 0.7436
14 3.5351 0.2353 7.3259 0.5537 29 1.2546 0.1223 6.4892 0.6545
15 0.9899 0.2601 5.0914 0.6601 30 0.8462 0.1397 5.9831 0.6912

Table 2 Comparison of RMS and MAE of our method and Huang’s algorithm on different images

Deuteranopia Protanopia

Image Our-RMS Huang-RMS Our-MAE Huang-MAE Image Our-RMS Huang-RMS Our-MAE Huang-MAE
1 0.0701 1.8418 0.2991 0.4685 16 2.8648 3.9783 0.1925 0.5264
2 0.3081 3.3045 0.1625 0.5986 17 3.2691 9.5358 0.3374 0.4961
3 0.3117 2.2023 0.1246 0.6981 18 3.6777 1.4808 0.3253 0.5941
4 0.1136 10.0117 0.2506 0.6189 19 0.6037 3.2050 0.1301 0.7642
5 3.5325 7.3057 0.1651 0.5943 20 1.4167 1.0197 0.1812 0.7089
6 1.1658 5.3868 0.1162 0.5391 21 0.9317 0.6471 0.1260 0.7596
7 0.1567 3.1136 0.1033 0.5491 22 2.4786 2.9204 0.3543 0.4387
8 1.5694 4.1873 0.3243 0.7842 23 0.8345 2.5635 0.1563 0.7159
9 2.3046 4.1764 0.2006 0.7915 24 2.2174 4.2212 0.2186 0.6384

10 3.9658 4.6578 0.2105 0.8219 25 2.4323 3.8657 0.3217 0.6397
11 3.3682 6.2614 0.1643 0.6483 26 0.6556 5.1955 0.4426 0.7615
12 1.1553 5.6538 0.1984 0.7672 27 0.1689 3.3593 0.1044 0.6289
13 1.3607 7.3006 0.2004 0.6348 28 2.1435 3.9652 0.3132 0.7513
14 3.5351 18.8047 0.2353 0.5397 29 1.2546 4.1589 0.1223 0.6612
15 0.9899 7.1393 0.2601 0.6987 30 0.8462 5.1268 0.1397 0.5482

Fig. 11 Comparison of RMS values for our method and CVD simulation image, and Huang’s color correction method. Left: deuteranopia
image, right: protanopia image.
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Fig. 12 Comparison of MAE values for our method, CVD simulation image, and Huang’s color correction method. Left: deuteranopia image,
right: protanopia image.

Fig. 13 Comparison of PR curves for different images. (a, c) compare our method with a direct CVD simulation image. (b, d) compare our
method with Huang’s color correction method. (a, b) Green blind images. (c, d) Red blind images.

with the Huang’s color correction algorithm. It is
clear that for a given recall rate, our method is more
accurate than direct detection of colorblind images,
and than Huang’s algorithm.

In most cases, the PR curve does not provide a
comprehensive assessment of the significance of the
image. Therefore, this paper uses the F-measure for
comprehensive evaluation, defined as
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Fig. 14 F-measure for our method. Left: deuteranopia, right: protanopia.

F-measure =
(
1 + γ2)

Precision × Recall
γ2 × Precision + Recall

(15)

where γ = 0.32 is a parameter.
Figure 14 shows F-measure for the salient region

for protanopia and deuteranopia, computed by our
method. In most cases the value is above 0.65.
Red-green blind simulation is performed by selecting
different styles of images, and the simulated images
are subjected to saliency-based color correction using
our method. The higher the F-measure, the closer
the detected salient region is to the salient region of
the original image.

6 Conclusions
We have proposed a saliency-based image correction
method that performs color correction on the salient
region of the image to achieve saliency correction
for colorblind images. In this paper, the method of
adversarial networks is used to inversely transform
the corrected colorblind image into a color image
in agreement with the input. After this conversion,
the color image is again subject to CVD simulation;
we performed saliency detection on these simulated
images, with results basically consistent with the
saliency of standard images. The experimental results
show that our proposed method effectively improves
the ability of persons with visual defects to capture
image salient regions. In future work, we wish to
explore saliency correction in video.
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